Kıkırdak Doku Onarımında Küçük Çaplı Delik Yönteminin Geleneksel Mikro Kırık Yöntemi ile Karşılaştırılması ve Hyalüronik Asit Temelli Hücresiz Matriks Skafold Eklemenin Etkisi: Bir Hayvan Çalışması
PDF
Atıf
Paylaş
Talep
P: 84-90
Ocak 2021

Kıkırdak Doku Onarımında Küçük Çaplı Delik Yönteminin Geleneksel Mikro Kırık Yöntemi ile Karşılaştırılması ve Hyalüronik Asit Temelli Hücresiz Matriks Skafold Eklemenin Etkisi: Bir Hayvan Çalışması

Bezmialem Science 2021;9(1):84-90
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 01.10.2019
Kabul Tarihi: 24.04.2020
Yayın Tarihi: 25.01.2021
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Fokal kıkırdak defektlerinin tedavisinde hala orijinal kıkırdak dokusu sağlayan mükemmel bir yöntem yoktur, bu nedenle en iyi tedavi seçeneklerini bulmak için araştırmalar devam etmektedir. Bu çalışmada amaç, kıkırdak defektlerinde küçük çaplı delik (SDHM) ve geleneksel mikro kırık tedavilerinin iyileştirme kalitesini karşılaşmaktır. Bununla beraber delik yoğunluğunun ve defekti hyalüronik asit bazlı aselüler matriks (HA bazlı AM) ile desteklemenin kıkırdak iyileşmesi üzerindeki etkileri de incelenmiştir.

Yöntemler:

Yirmi bir Yeni Zelanda tavşanının her iki femur trochlear oluğunda 5 mm çapında ve 3 mm derinliğinde artiküler kıkırdak defekti oluşturuldu. Her biri 6 dizden oluşan yedi grup oluşturuldu. Tavşanlar 12 hafta sonra sakrifiye edildi ve rejenere kıkırdak Wakitani skorlama sistemi kullanılarak histolojik değerlendirme için toplandı.

Bulgular:

Tüm defektler rejenere doku ile makroskopik olarak dolduruldu. 1. Grup [14 (10-14) puan], VI [6 (1-11) puan] ve VII. [5 (3-10) puan] gruplara göre anlamlı derecede yüksek Wakitani skoruna sahipti (p=0.043 ve p=0.016 ). Diğer gruplar arasında anlamlı bir fark gözlenmedi. Hyaluronik asit bazlı aselüler matriks ile destekleme, kıkırdak iyileşmesine katkıda bulunmadı.

Sonuç:

SDHM yoğunluğunun artırılması, geleneksel mikro kırık ile karşılaştırıldığında kıkırdak iyileşmesini artırır. Hyalüronik asit bazlı aselüler matriks implantasyonu ile desteklenen SDHM’nin artırılması ise rejenere kıkırdak kalitesini artırmadı.

References

1
Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75:532-53.
2
Karthikeyan S, Roberts S, Griffin D. Microfracture for acetabular chondral defects in patients with femoroacetabular impingement: results at second-look arthroscopic surgery. Am J Sports Med 2012;40:2725-30.
3
Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007;89:2105-12.
4
Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, et al. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Two-Year Follow-up of a Prospective Randomized Trial. Am J Sports Med 2014;42:1384-94.
5
Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 2006;14:1119-25.
6
Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003;85:223-30.
7
Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003;19:477-84.
8
Mithoefer K, Williams RJ, 3rd, Warren RF, Potter HG, Spock CR, Jones EC, et al. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am 2006;88 Suppl 1 Pt 2:294-304.
9
Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 2011;29:1178-84.
10
Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 2014;42:2741-50.
11
Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H. Small-Diameter Awls Improve Articular Cartilage Repair After Microfracture Treatment in a Translational Animal Model. Am J Sports Med 2016;44:209-19.
12
Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J. Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun 2006;349:723-31.
13
Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, et al. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 2007;28:5462-70.
14
Cheuk YC, Wong MW, Lee KM, Fu SC. Use of allogeneic scaffold-free chondrocyte pellet in repair of osteochondral defect in a rabbit model. J Orthop Res 2011;29:1343-50.
15
Nakamura T, Sekiya I, Muneta T, Hatsushika D, Horie M, Tsuji K, et al. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 2012;14:327-38.
16
Kramer J, Bohrnsen F, Lindner U, Behrens P, Schlenke P, Rohwedel J. In vivo matrix-guided human mesenchymal stem cells. Cell Mol Life Sci 2006;63:616-26.
17
Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop 2017;41:797-804.
18
Benthien JP, Behrens P. Nanofractured autologous matrix induced chondrogenesis [NAMIC(c)]--Further development of collagen membrane aided chondrogenesis combined with subchondral needling: A technical note. Knee 2015;22:411-5.
19
van den Borne MP, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J; International Cartilage Repair S. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage 2007;15:1397-402.
20
Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76:579-92.
21
Xia X, Li J, Xia B, Yang H, Zhang D, Zhou B, et al. Matrigel scaffold combined with Ad-hBMP7-transfected chondrocytes improves the repair of rabbit cartilage defect. Exp Ther Med 2017;13:542-50.
22
Dai Y, Gao Z, Ma L, Wang D, Gao C. Cell-Free HA-MA/PLGA Scaffolds with Radially Oriented Pores for In Situ Inductive Regeneration of Full Thickness Cartilage Defects. Macromol Biosci 2016;16:1632-42.
23
Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med 2009;37 Suppl 1:148S-55S.
24
Schindler OS. Current concepts of articular cartilage repair. Acta Orthop Belg 2011;77:709-26.
25
Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009;27:1432-8.
26
Fortier LA, Cole BJ, McIlwraith CW. Science and animal models of marrow stimulation for cartilage repair. J Knee Surg 2012;25:3-8.
27
Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 2005;13:655-64.
28
Henderson I, Lavigne P, Valenzuela H, Oakes B. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 2007;455:253-61.
29
Otsuka Y, Mizuta H, Takagi K, Iyama K, Yoshitake Y, Nishikawa K, et al. Requirement of fibroblast growth factor signaling for regeneration of epiphyseal morphology in rabbit full-thickness defects of articular cartilage. Dev Growth Differ 1997;39:143-56.
30
Min BH, Choi WH, Lee YS, Park SR, Choi BH, Kim YJ, et al. Effect of different bone marrow stimulation techniques (BSTs) on MSCs mobilization. J Orthop Res 2013;31:1814-9.
31
Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am 2003;29:675-85.
32
Marchand C, Chen G, Tran-Khanh N, Sun J, Chen H, Buschmann MD, et al. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls. Tissue Eng Part A 2012;18:508-19.
33
Lim HC, Bae JH, Song SH, Park YE, Kim SJ. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 2012;470:2261-7.
34
Loken S, Jakobsen RB, Aroen A, Heir S, Shahdadfar A, Brinchmann JE, et al. Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model. Knee Surg Sports Traumatol Arthrosc 2008;16:896-903.
35
Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC, et al. Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 2012;18:2497-506.
36
Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 2017;25:2494-501.
37
Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic.
2024 ©️ Galenos Publishing House