İvermektin Meme Kanseri Hücrelerinde Oksidatif Stres ve DNA Hasarı Oluşturuyor
PDF
Atıf
Paylaş
Talep
P: 15-22
Ocak 2023

İvermektin Meme Kanseri Hücrelerinde Oksidatif Stres ve DNA Hasarı Oluşturuyor

Bezmialem Science 2023;11(1):15-22
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 06.09.2021
Kabul Tarihi: 11.08.2022
Yayın Tarihi: 30.01.2023
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Meme kanseri (MK), tüm dünyada kadınlar arasında en sık teşhis edilen kanser türlerinden biri olmaya devam etmektedir. İlaçların yeniden hedeflendirilmesinin (repurposing) kanser tedavisinde ilaç geliştirme için uygun bir alternatif olduğu ileri sürülmektedir. Streptomyces avermitilis bakterisi tarafından üretilen anti-paraziter ajan olan İvermektin, şu anda onkolojide kapsamlı bir şekilde incelenmektedir ve MK tedavisi için potansiyel bir ilaç adayı olarak görülmeye başlanmıştır. Bununla birlikte, çalışmalar sınırlıdır ve MK’de kesin anti-tümörijenik mekanizma henüz açıklığa kavuşturulmamıştır.

Yöntemler:

İvermektin’in potansiyel antikanser etkilerinin moleküler mekanizmalarını aydınlatmak için MK hücreleri üzerindeki in vitro etkilerini hücre canlılığı, hücre içi ROS seviyeleri, glutatyon seviyeleri, mitokondriyal membran potansiyeli, apoptoz ve DNA hasarı açısından inceledik.

Bulgular:

İvermektin, MK hücrelerinde oksidatif stres ve DNA hasarı yoluyla apoptozu indükler.

Sonuç:

Yeniden hedeflendirmek için umut verici anti-kanser ajanlarının in vitro mekanik çalışmaları, ilaç geliştiriciler için temel kılavuzlardır. İvermektin, bu amaçla MK tedavisindeki potansiyeli açısından bir ilaç adayı olarak incelenmeye devam edilmelidir

References

1
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Cancer Today (powered by GLOBOCAN 2018). IARC CancerBase 2018;15.
2
Waks AG, Winer EP. Breast Cancer Treatment: A Review. JAMA 2019;321:288-300.
3
Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. Updates Surg 2017;69:313-7.
4
Harbeck N, Gnant M. Breast cancer. Lancet 2017;389:1134-50.
5
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012;486:346-52.
6
Antoszczak M, Markowska A, Markowska J, Huczyński A. Old wine in new bottles: Drug repurposing in oncology. Eur J Pharmacol 2020;866:172784.
7
Lindley D. Merck’s new drug free to WHO for river blindness programme. Nature 1987;329:752.
8
Juarez M, Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Diaz-Chavez J, Duenas-Gonzalez A. Antitumor effects of ivermectin at clinically feasible concentrations support its clinical development as a repositioned cancer drug. Cancer Chemother Pharmacol 2020;85:1153-63.
9
Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res 2018;8:317-31.
10
Hashimoto H, Messerli SM, Sudo T, Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther 2009;3:243-6.
11
Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X,  et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood 2010;116:3593-603.
12
Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget 2017;8:107666-77.
13
Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif 2018;52:e12543.
14
Liu Y, Fang S, Sun Q, Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun 2016;480:415-21.
15
Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ruiz i Altaba A. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT ‐ TCF pathway responses in human cancer. EMBO Mol Med 2014;6:1263-78.
16
Dou Q, Chen HN, Wang K, Yuan K, Lei Y, Li K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt Axis in breast cancer. Cancer Res 2016;76:4457-69.
17
Wang K, Gao W, Dou Q, Chen H, Li Q, Nice EC, et al. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer. Autophagy 2016;12:2498-9.
18
Dominguez-Gomez G, Chavez-Blanco A, Medina-Franco JL, Saldivar-Gonzalez F, Flores-Torrontegui Y, Juarez M,  et al. Ivermectin as an inhibitor of cancer stem-like cells. Mol Med Rep 2018;17:3397-403.
19
Kwon YJ, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, et al. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol Cancer Ther 2015;14:1824-36.
20
Crouch SPM, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 1993;160:81-8.
21
Kocyigit A, Guler EM, Karatas E, Caglar H, Bulut H. Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells. Mutat Res - Genet Toxicol Environ Mutagen 2018;829:50-60.
22
Wu T, Qiang L, Chen FH, Zhao Q, Yang Z, Zou MJ, et al.  LFG-500, a newly synthesized flavonoid, induced a reactive oxygen species-mitochondria-mediated apoptosis in hepatocarcinoma cells. Biomed Prev Nutr 2011;1:132-8.
23
Günes-Bayir A, Kiziltan HS, Kocyigit A, Güler EM, Karataş E, Toprak A. Effects of natural phenolic compound carvacrol on the human gastric adenocarcinoma (AGS) cells in vitro. Anticancer Drugs 2017;28:522-30.
24
Rottenberg H, Shaolong W. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta - Mol Cell Res 1998;1404:393-404.
25
McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol 1995;46:153-85.
26
Kasibhatla S. Acridine Orange/Ethidium Bromide (AO/EB) Staining to Detect Apoptosis. Cold Spring Harb Protoc 2006:pdb.prot4493-pdb.prot4493.
27
Kocyigit A, Guler EM. Curcumin induce DNA damage and apoptosis through generation of reactive oxygen species and reducing mitochondrial membrane potential in melanoma cancer cells. Cell Mol Biol (Noisy-le-grand) 2017;63:97-105.
28
Singh NP, Danner DB, Tice RR, Brant L, Schneider EL. DNA damage and repair with age in individual human lymphocytes. Mutat Res DNAging 1990;237:123-30.
29
Demirbag R, Yilmaz R, Gur M, Kocyigit A, Celik H, Guzel S, et al. Lymphocyte DNA damage in patients with acute coronary syndrome and its relationship with severity of acute coronary syndrome. Mutat Res - Fundam Mol Mech Mutagen 2005;578:298-307.
30
Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, et al. Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 2003;18:45-51.
31
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011;13:1-7.
32
Theodossiou TA, Ali M, Grigalavicius M, Grallert B, Dillard P, Schink KO, et al. Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. npj Breast Cancer 2019;5:1-10.
33
Draganov D, Gopalakrishna-Pillai S, Chen YR, Zuckerman N, Moeller S, Wang C, et al Modulation of P2X4/P2X7/ Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 2015;5:16222.
34
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem 2018;552:50-9.
35
Zhu M, Li Y, Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem Biophys Res Commun 2017;492:373-8.
36
Hargreaves IP, Al Shahrani M, Wainwright L, Heales SJR.Drug-Induced Mitochondrial Toxicity. Drug Saf 2016;39:661-74.
37
Jiang L, Wang P, Sun Y-J, Wu Y-J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin cancer Res 2019;38:265.
38
Kwon YJ, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, et al (2015) Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple negative breast cancer HHS Public Access. Mol Cancer Ther 2015;14:1824-36.
2024 ©️ Galenos Publishing House