Farklı PEEK Materyallerinin Biyofilm Formasyonuna Etkisinin Değerlendirilmesi: Bir <i>İn vitro</i> Çalışma
PDF
Atıf
Paylaş
Talep
P: 191-197
Nisan 2024

Farklı PEEK Materyallerinin Biyofilm Formasyonuna Etkisinin Değerlendirilmesi: Bir İn vitro Çalışma

Bezmialem Science 2024;12(2):191-197
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 09.08.2023
Kabul Tarihi: 12.12.2023
Yayın Tarihi: 03.05.2024
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Bu in vitro çalışmanın amacı iki farklı tip polietereterketon (PEEK) materyali (saf ve seramik ile güçlendirilmiş) üzerinde mikroorganizma tutulumu ve biyofilm formasyonunun değerlendirilmesidir.

Yöntemler:

Çalışmada doldurucu içermeyen saf PEEK (Juvora) ve %20 nano-seramik doldurucu içeren PEEK (Seramik PEEK - yüksek performanslı polimer) materyallerinden 8 x 8 x 4 mm boyutlarında dikdörtgen şeklinde toplam 72 örnek hazırlandı. Numunelerin yüzey pürüzlülüğünü değerlendirmek için profilometre temas yüzeyi ölçüm cihazı kullanıldı. Her iki PEEK grubu mikroorganizma suşları dikkate alınarak 4 alt gruba ayrıldı (n=9). Mikrobiyolojik analizde Staphylococcus aureus [American Type Culture Collection (ATCC 29213)], Acinetobacter baumannii (ATCC 19606), Enterococcus faecalis (ATCC 29212), Candida albicans (ATCC 10231) standart suşları kullanıldı. Her mikroorganizma için eşit sayıda blok kullanıldı (9 saf PEEK ve 9 Seramik PEEK). Çalışma blokları mikroorganizma süspansiyonlarını içeren 24 kuyucuklu mikroplaklara eklendi ve 37 °C’de 72 saat inkübe edildi. Mikroplaklar kristal viyole kullanılarak 490 nm dalga boyunda okundu.

Bulgular:

Yüzey pürüzlülüğü açısından PEEK grupları arasında anlamlı fark saptanmadı. Her iki PEEK materyali arasında S. aureus, A. baummanii, E. faecalis ve C. albicans suşları adezyonu açısından anlamlı farklılık bulunmadı (p>0,05). Saf PEEK bloklarında en yüksek tutulum S. aureus mikroorganizmasında görülürken (p<0,001), en düşük tutulum C. albicans’ta saptandı (p<0,001). Seramik PEEK grubunda ise S. aureus ve A. baummanii adezyonları E. faecalis ve C. albicans’tan fazla bulundu (p<0,001).

Sonuç:

Bu araştırmanın sonuçları, PEEK malzemeleri arasında farklı suşların biyofilm oluşumunda önemli bir fark olmadığını gösterdi. Bu, seramikle güçlendirilmiş PEEK’in biyolojik özelliklerini tanımlamaya yönelik bir ön çalışmaydı. Bu konuda daha fazla karşılaştırmalı ve klinik çalışmalara ihtiyaç vardır.

References

1
Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol 2000 2002;28:12-55.
2
Renvert S, Polyzois I. Risk indicators for peri-implant mucositis: a systematic literature review. J Clin Periodontol 2015;42 Suppl 16:S172-86.
3
Salvi GE, Ramseier CA. Efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis. A systematic review. J Clin Periodontol 2015;42 Suppl 16:S187-201.
4
Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis. J Clin Periodontol 2018;45 Suppl 20:S237-45.
5
Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment. Periodontol 2000 2019;81:29-40.
6
Dixon DR, London RM. Restorative design and associated risks for peri-implant diseases. Periodontol 2000 2019;81:167-78.
7
Peri-implantitis: Summary and consensus statements of group 3. The 6th EAO Consensus Conference 2021. Clin Oral Implants Res 2021;32 Suppl 21:245-53.
8
Lang NP, Berglundh T; Working Group 4 of Seventh European Workshop on Periodontology. Periimplant diseases: where are we now?--Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011;38 Suppl 11:178-81.
9
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig 2020;24:4237-60.
10
Chen F, Ou H, Lu B, Long H. A constitutive model of polyether-ether-ketone (PEEK). J Mech Behav Biomed Mater 2016;53:427-33.
11
Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials 2008 Apr;29(11):1563-72.
12
Abu Bakar MS, Cheng MH, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 2003;24:2245-50.
13
Skirbutis G, Dzingutė A, Masiliūnaitė V, Šulcaitė G, Žilinskas J. A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija 2017;19:19-23.
14
Najeeb S, Khurshid Z, Matinlinna JP, Siddiqui F, Nassani MZ, Baroudi K. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int J Dent 2015;2015:381759.
15
Almasi D, Iqbal N, Sadeghi M, Sudin I, Abdul Kadir MR, Kamarul T. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review. Int J Biomater 2016;8202653.
16
Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, et al. Polyetheretherketone-a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater 2013;101:1209-16.
17
Porojan L, Toma FR, Bîrdeanu MI, Vasiliu RD, Uțu ID, Matichescu A. Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling. Polymers (Basel) 2022;14:2144.
18
Blanch-Martínez N, Arias-Herrera S, Martínez-González A. Behavior of polyether-ether-ketone (PEEK) in prostheses on dental implants. A review. J Clin Exp Dent 2021;13:e520-6.
19
Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry - A Review. J Med Life 2019;12:5-9.
20
D’Ercole S, Cellini L, Pilato S, di Lodovico S, Iezzi G, Piattelli A, et al. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. J Mater Sci Mater Med 2020;31:84.
21
Bock RM, Jones EN, Ray DA, Sonny Bal B, Pezzotti G, McEntire BJ. Bacteriostatic behavior of surface modulated silicon nitride in comparison to polyetheretherketone and titanium. J Biomed Mater Res A 2017;105:1521-34.
22
Barkarmo S, Longhorn D, Leer K, Johansson CB, Stenport V, Franco‐Tabares S, et al Biofilm formation on polyetheretherketone and titanium surfaces. Clin Exp Dent Res 2019;5:427-37.
23
Peng TY, Lin DJ, Mine Y, Tasi CY, Li PJ, Shih YH, et al. Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone and In Vitro Antimicrobial Efficacy of Photodynamic Therapy on Peri-Implant Mucositis. Polymers (Basel) 2021;13:940.
24
Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17 Suppl 2:68-81.
25
Tsikopoulos K, Sidiropoulos K, Kitridis D, Hassan A, Drago L, Mavrogenis A, et al. Is coating of titanium implants effective at preventing Staphylococcus aureus infections? A meta-analysis of animal model studies. Int Orthop 2021;45:821-35.
26
Jin HY, Teng MH, Wang ZJ, Li X, Liang JY, Wang WX, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. J Prosthet Dent 2019;122:383-8.
27
Rajamani VK, Reyal SS, Gowda EM, Shashidhar MP. Comparative prospective clinical evaluation of computer aided design/ computer aided manufacturing milled BioHPP PEEK inlays and Zirconia inlays. J Indian Prosthodont Soc 2021;21:240-8.
28
Abdelrehim A, Abdelhakim A, ElDakkak S. Influence of different materials on retention behavior of CAD-CAM fabricated bar attachments. J Prosthet Dent 2022;128:765-75.
29
Zoidis P, Papathanasiou I, Polyzois G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. J Prosthodont 2016;25:580-4.
30
Bremer F, Grade S, Kohorst P, Stiesch M. In vivo biofilm formation on different dental ceramics. Quintessence Int 2011;42:565-74.
31
Guerreiro-Tanomaru JM, Vázquez-García FA, Bosso-Martelo R, Bernardi MI, Faria G, Tanomaru M Filho. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements. J Appl Oral Sci 2016;24:204-10.
32
Wiessner A, Wassmann T, Wiessner JM, Schubert A, Wiechens B, Hampe T, et al. In Vivo Biofilm Formation on Novel PEEK, Titanium, and Zirconia Implant Abutment Materials. Int J Mol Sci 2023;24:1779.
33
Hahnel S, Wieser A, Lang R, Rosentritt M. Biofilm formation on the surface of modern implant abutment materials. Clin Oral Implants Res 2015;26:1297-301.
34
Wei X, Gao L, Wu K, Pan Y, Jiang L, Lin H, et al. In vitro study of surface properties and microbial adhesion of various dental polymers fabricated by different manufacturing techniques after thermocycling. Clin Oral Investig 2022;26:7287-97.
35
Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery. Infect Immun 2020;88:e00932-19.
36
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 2019;43:622-41.
37
Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. Candida-associated denture stomatitis. Aetiology and management: a review. Part 1. Factors influencing distribution of Candida species in the oral cavity. Aust Dent J 1998;43:45-50.
38
Rams TE, Feik D, Mortensen JE, Degener JE, van Winkelhoff AJ. Antibiotic susceptibility of periodontal Enterococcus faecalis. J Periodontol 2013;84:1026-33.
39
Miller DP, Wang Q, Weinberg A, Lamont RJ. Transcriptome analysis of Porphyromonas gingivalis and Acinetobacter baumannii in polymicrobial communities. Mol Oral Microbiol 2018;33:364-77.
40
Gudkov SV, Burmistrov DE, Smirnova VV, Semenova AA, Lisitsyn AB. A Mini Review of Antibacterial Properties of Al2O3 Nanoparticles. Nanomaterials (Basel) 2022;12:2635.
41
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000 2017;73:22-40.
42
Kniha K, Heussen N, Modabber A, Hölzle F, Möhlhenrich SC. The effect of zirconia and titanium surfaces on biofilm formation and on host-derived immunological parameters. Int J Oral Maxillofac Surg 2021;50:1361-74.
43
Zeller B, Stöckli S, Zaugg LK, Astasov-Frauenhoffer M, Hauser-Gerspach I, Waltimo T, et al. Biofilm formation on metal alloys, zirconia and polyetherketoneketone as implant materials in vivo. Clin Oral Implants Res 2020;31:1078-86.
44
Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfler H, Waltimo T,et al In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J Periodontol 2017;88:298-307.
45
Abualsaud R, Aleraky DM, Akhtar S, Khan SQ, Gad MM. Antifungal Activity of Denture Base Resin Containing Nanozirconia: In Vitro Assessment of Candida albicans Biofilm. ScientificWorldJournal 2021;2021:5556413.
2024 ©️ Galenos Publishing House