Pluronic<sup>®</sup> F-127 Hidrojel İçinde Temozolomid Yüklü PLGA Nanopartiküllerinden İlaç Salım Kinetiklerinin Değerlendirilmesi
PDF
Atıf
Paylaş
Talep
P: 735-741
Aralık 2022

Pluronic® F-127 Hidrojel İçinde Temozolomid Yüklü PLGA Nanopartiküllerinden İlaç Salım Kinetiklerinin Değerlendirilmesi

Bezmialem Science 2022;10(6):735-741
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 24.11.2021
Kabul Tarihi: 23.01.2022
Yayın Tarihi: 16.12.2022
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Tümör bölgesinde temolozomid’in (TMZ) kontrollü lokal salınımı, glioblastomanın tedavisinde yeni bir stratejidir. Biyobozunur polimerlere dayanan lokalize dağıtım sistemleri, belirli bir süre boyunca ilaç salınımını yavaşlatabilir ve kontrol edebilir. Bu nedenle, çalışmanın ana amacı, TMZ’nin sürekli ve yerel bir dağıtımını sağlayacak olan %18 Pluronic® hidrojel matrisinde formüle edilen bir poli(laktik-ko-glikolik asit) nanoparçacık (NP) sisteminde TMZ’yi kapsüllemek için yeni bir yaklaşımı araştırmaktı.

Yöntemler:

Hidrojeller, ayarlanabilir özellikleri ve kararsız farmasötikleri tutma kapasiteleri nedeniyle yerel ilaç dağıtım yöntemleri olarak hızla araştırılmaktadır. Öte yandan, ilaç salımını tanımlamaya ve değerlendirmeye yönelik yerleşik prosedürlerin olmaması, ilaç salım özelliklerini tanımlamaya yönelik sistemlerin güvenilir bir şekilde değerlendirilmesini engelleyen önemli sorunlar ortaya çıkarmaktadır.

Bulgular:

Yeni bir hidrojel ilaç taşıma sisteminden 164,4-235,5 nm arasında değişen partikül boyutu ve %52-69,67 kapsülleme etkinliğine sahip TMZ NP’lerin in vitro ilaç salım kinetiğini araştırmayı amaçladık.

Sonuç:

Serbest bırakma sistemleri uygulanmadan önce serbest bırakma kinetiğini tahmin etmek için matematiksel modellemenin kullanılmasının çok faydalı olduğu ortaya çıkmıştır. Salım mekanizmasının difüzyon kontrollü olduğu ve matriksin çözünmesinin eşlik etmediği bulundu.

References

1
Alphandéry E. Glioblastoma treatments: an account of recent industrial developments. Front Pharmacol 2018;9:879.
2
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3:1377-97.
3
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161:505-22.
4
Sharma S, S Tiwari. A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol 2020;162:737-47.
5
Chatterjee S, Hui PCL, Kan CW, Wang W. Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 2019;9:1-13.
6
Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater 2020;110:37-67.
7
Sayiner O, Arisoy S, Comoglu T, Ozbay FG, Esendagli G. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2020;57:101627.
8
Paarakh MP, Jose PA, Setty CM, Christoper GP. Release kinetics–concepts and applications. Int J Pharm Res Technol 2018;8:12-20.
9
Caccavo D. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. International Journal of Pharmaceutics 2019;560:175-90.
10
Ananta JS, R Paulmurugan, and TF Massoud. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation. Neurol Res 2016;38:51-9.
11
Hurler J, Engesland A, Poorahmary Kermany B, Škalko‐Basnet N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. Journal of Applied Polymer Science 2012;125:180-8.
12
Arisoy S, Comoglu T. Kinetic evaluation of L-Dopa loaded WGA-grafted nanoparticles. Medicine 2020;9:385-8.
13
Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med 2015;8:19670.
14
Lu B, X Lv, and Y Le. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers (Basel) 2019;11:304.
15
Derman S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. Journal of Nanomaterials 2015;16:318.
16
Mainardes RM and RC Evangelista. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 2005;290:137-44.
17
Verbich SV, Dukhin SS, Tarovski A, Holt Ø, Saether Ø, Sjo J. Evaluation of stability ratio in oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997;123:209-23.
18
Małolepsza-Jarmołowska K. The effect of poloxamer 407 on the properties of hydrophilic gels containing lactic acid complexed with chitosan. Progress on Chemistry and Application of Chitin and its Derivatives 2010;15:143-8.
19
Kushan E. and E Senses. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. ACS Applied Bio Materials 2021;4:3507-17.
20
Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, Cleveland JL, et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun 2018;9:1-11.
21
Averineni RK, Shavi GV, Gurram AK, Deshpande PB, Arumugam K, Maliyakkal N, et al. PLGA 50: 50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation. Bull Mat Sci 2012;35:319-26.
22
Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 2010;12:263-71.
23
Comoglu T, Gonul N, Dogan A, Basci N. Development and in vitro evaluation of pantoprazole-loaded microspheres. Drug delivery 2008;15:295-302.
24
Ramos DJ, Carrelo H, Borges JP, Calero Romero N, Santos García J, Cidade MT. Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. Materials 2019;12:1-13.
25
Dwivedi R, AK Singh, Dhillon A. pH-responsive drug release from dependal-M loaded polyacrylamide hydrogels. Journal of Science: Advanced Materials and Devices 2017;2:45-50.
26
Lee PI. Kinetics of drug release from hydrogel matrices. Journal of Controlled Release 1985; 2:277-88.
27
Serim TMY, ANTD Özdemir. Kontrollü salım yapan rivastigmin içeren implante partiküler sistemlerin formülasyonu üzerine çalışmalar. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü Sağlık Bilimleri Enstitüsü Farmasötik Teknoloji Anabilim Dalı.
2024 ©️ Galenos Publishing House