Tavuk Chorio Allantoik Membran Modelinde Altın Nanopartikülünün Anjiogeneze Etkisi
PDF
Atıf
Paylaş
Talep
P: 398-402
Ekim 2020

Tavuk Chorio Allantoik Membran Modelinde Altın Nanopartikülünün Anjiogeneze Etkisi

Bezmialem Science 2020;8(4):398-402
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 30.01.2020
Kabul Tarihi: 26.03.2020
Yayın Tarihi: 30.10.2020
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Günümüzde nanoteknoloji, atom yapısındaki moleküllerin yapısını değiştirme kabiliyeti nedeniyle birçok alanda yaygın olarak kullanılmaktadır. Metalik nanopartiküller, benzersiz özellikleri nedeniyle araştırmacılardan büyük ilgi görmüştür. Altın nanoparçacıkların (AuNP) belirgin özelliklerine dayanarak, uzun zamandır birçok kanserin teşhisi ve ilaç verme uygulamaları için potansiyel bir araç olarak değerlendirilmiştir. Yeni damarların gelişimi olan anjiyogenez, embriyonik büyümeyi destekler ve yetişkinlik dönemindeki birçok biyolojik süreci kritik bir şekilde düzenler. Anjiyogenezin inhibisyonu, gelişme regresyonuna ve malign tümörlerin metastazına neden olur. Bu çalışmada AuNP’lerin in vivo civciv koryoallantoik membran (CAM) modelindeki anjiyogenez üzerindeki etkilerini incelemeyi amaçladık.

Yöntemler:

Beşinci gün yirmi dört yumurtanın CAM’ye 20 mL konsantrasyonda AuNP çözeltisi uyguladık. Ardından 6. ve 7. günlerde makroskopik olarak sonuçları değerlendirdik.

Bulgular:

Çalışmamızda AuNP’lerin anjiyogenez oluşturduğunu gözlemledik.

Sonuç:

AuNP’lerin kanser seyri sırasında artan anjiyogenez nedeniyle biyosensör yapımında ideal nanoparçacıklar olamayabileceğini düşünüyoruz.

References

1
Letfullin RR, Iversen CB, George TF. Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomedicine 2011;7:137-45.
2
Singh P, Katyal A, Kalra R, Chandra R. Copper nanoparticles in an ionic liquid: An efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxothiazolyl)methanes. 2008;49:727-30.
3
Wei X, Zhu B, Xu Y. Preparation and stability of copper particles formed using the template of hyperbranched poly (amine-ester). Colloid Polym Sci 2005;284:102-7.
4
Ponce AA, Klabunde KJ. Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J Mol Catal A Chem 2005;225:1-6.
5
Gréget R, Nealon GL, Vileno B, Turek P, Mény C, Ott F, et al. Magnetic properties of gold nanoparticles: a room-temperature quantum effect. ChemPhysChem 2012;13:3092-7.
6
Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 2010;60.
7
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J Phys Chem B 2003;107:668-77.
8
Longano D, Ditaranto N, Sabbatini L, Torsi L, Cioffi N. Synthesis and antimicrobial activity of copper nanomaterials. Nano-Antimicrobials 2012:85-117.
9
Cabuzu D, Cirja A, Puiu R, Grumezescu AM. Biomedical applications of gold nanoparticles. Curr Top Med Chem 2015;15:1605-13.
10
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. Int J Mol Sci 2018;19:1979.
11
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019;271:101989.
12
Zhang X. Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochem Biophys 2015;72:771-5.
13
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019;271:101989.
14
Sajib S, Zahra FT, Lionakis MS, German NA, Mikelis CM. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis 2018;21:1-14.
15
Ataergin AS, Özet A, Arpacı F. The place of angiogenesis inhibitors in cancer therapy. Turk Klin J Med Sci 1999;19:100-5.
16
Fukumura DAI, Jain RK. Imaging angiogenesis and the microenvironment. APMIS 2008;116:695-715.
17
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27-31.
18
Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017;20:409-26.
19
Hou W, Hu S, Li C, Ma H, Wang Q, Meng G, et al. Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. Biomed Res Int 2019;2019:2025636.
20
Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod Toxicol 2017;70:97-101.
21
Schmitd LB, Liu M, Scanlon CS, Banerjee R, D’Silva NJ. The Chick Chorioallantoic Membrane In Vivo Model to Assess Perineural Invasion in Head and Neck Cancer. J Vis Exp doi: 10.3791/59296
22
Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine 2011;7:580–7.
23
Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 2005;11:3530–4.
24
Li M, Pathak RR, Lopez-Rivera E, Friedman SL, Aguirre-Ghiso JA, Sikora AG. The In Ovo Chick Chorioallantoic Membrane (CAM) Assay as an Efficient Xenograft Model of Hepatocellular Carcinoma. J Vis Exp 2015:52411.
25
Knighton D, Ausprunk D, Tapper D, Folkman J. Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer 1977;35:347-56.
26
Özgürtaş T. Anjiyogenezde bir in-vivo model: civciv koriyoallantoik membran, Gülhane Tıp Derg 2009;51:67-9.
27
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016;11:673–92.
28
Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med 2013;273:114-27.
29
 Gülşen MR, Uzunay NS, Fermanlı O, Çoban ZD, Öztürk D, Hamidi M, et al. Anti-angiogenic role of Ankaferd on chick chorioallontoic membrane model. Gülhane Tıp Derg 2015;57:274-9.
30
Al-Trad B, Aljabali A, Al Zoubi M, Shehab M, Omari S. Effect of gold nanoparticles treatment on the testosterone-induced benign prostatic hyperplasia in rats. Int J Nanomedicine 2019;14:3145-54.
31
Shen N, Zhang R, Zhang HR, Luo HY, Shen W, Gao X, Guo DZ, Shen J. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int J Ophthalmol 2018;11:1269-76.
32
Mârza SM, Magyari K, Bogdan S, Moldovan M, Peştean C, Nagy A, et al. Skin wound regeneration with bioactive glass-gold nanoparticles ointment. Biomed Mater 2019;14:025011.
33
Yang D, Jin C, Ma H, Huang M, Shi GP, Wang J, et al. EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 2016;19:297-309.
2024 ©️ Galenos Publishing House