COVİD-19: İvermektin; Moleküler Mekanizmalar, Sınırlılıklar, Öneriler
PDF
Atıf
Paylaş
Talep
P: 94-98
Temmuz 2020

COVİD-19: İvermektin; Moleküler Mekanizmalar, Sınırlılıklar, Öneriler

Bezmialem Science 2020;8(3):94-98
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 20.05.2020
Kabul Tarihi: 15.06.2020
Yayın Tarihi: 18.12.2020
PDF
Atıf
Paylaş
Talep

ÖZET

Şiddetli akut solunum sendromu koronavirüs-2 (SARS-CoV-2) ile yeniden gündeme gelen, evcil ve yabani hayvan türlerinin yanı sıra insanlarda da hastalık yapabilme potansiyeli yüksek olan CoV karşı günümüze değin etkin bir tedavi yöntemi bulunamamıştır. Yüksek morbidite ve mortalite oranı ile pandemik bir karakter kazanan bu virüsle mücadele amacıyla tedavi seçeneklerinin araştırılması multidisipliner bir araştırma konusudur. Bu kapsamda, güncel konu niteliğinde olan SARS-CoV-2 ile mücadelede ilaçların yeniden konumlandırma çalışmaları gündeme gelmiştir. Ancak rasyonel kullanım amaçlarının dışındaki ilaç seçeneklerinin, kolay ulaşılabilirlik ve hızla uygulamaya aktarılabilir olmaları gibi üstün özelliklerine rağmen, etkinlik ve güvenilirliklerine yönelik değerlendirmelerin yapılmamış olması yanlış yönlendirmelere yol açabilmektedir. Bu derlemede, etkin bir sağaltım seçeneği olabileceği ileri sürülen ivermektinin SARS-CoV-2 tedavisinde kullanılabilirliği, riskleri ve olası moleküler mekanizmalar, ilacın farmakokinetik ve toksikokinetik özellikleri çerçevesinde ele alınmıştır.

References

1
İnal S. Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) Enfeksiyonu: Okmeydanı Tıp Dergisi 2016;32(Ek sayı):37-45.
2
Microbiology Book Online, Viroloji Bölüm 25, Koronavirüsler, Soğuk Algınlığı ve SARS, Availeble from: https://www.microbiologybook.org/Turkish-virology/virolchapter25turk.htm
3
TÜBİTAK, Bilim ve Teknik Dergisi, Küresel Kabus, Availeble from: https://tubitak.gov.tr/sites/default/files/18842/bilim_ve_teknik_coronavirus_hakkinda.pdf
4
Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and SARS-COV-2. Turkish Journal of Medical Sciences. https://doi.org/10.3906/sag-2004-127.
5
International Committee on Taxonomy of Viruses (ICTV), Naming the 2019 Coronavirus 2020. Availeble from: https://talk.ictvonline.org/
6
World Health Organisation, Naming the coronavirus disease (COVID-19) and the virus that causes it, 2020. Availeble from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
7
Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: Progress, challenges and recommendations. Içinde Nat Rev Drug Discov 2018;1:41-58.
8
Information for Clinicians on Investigational Therapeutics for Patients with COVID-19 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/therapeutic-options.html
9
T.C. Sağlık Bakanlığı COVID-19 (SARS-CoV-2 ENFEKSİYONU) REHBERİ 2020. Available from: https://covid19bilgi.saglik.gov.tr/depo/rehberler/COVID-19_Rehberi.pdf?type=file
10
World Health Organisation Off-label use of medicines for COVID-19 2020. Available from: https://www.who.int/news-room/commentaries/detail/off-label-use-of-medicines-for-covid-19
11
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020;178:104787. https://doi.org/10.1016/j.antiviral.2020.104787
12
U.S.National Institute of Health, Clinical Trials, 2020. Available from: https:// clinicaltrials. gov/ct2/ results?cond= COVID&term= ivermectin&cntry= &state=&city= &dist= &Search=Search
13
U.S. Food and Drug Administration, Letter to Stakeholder, 2020, Available from: https://www.fda.gov/animal-veterinary/product-safety-information/fda-letter-stakeholders-do-not-use-ivermectin-intended-animals-treatment-covid-19-humans
14
Bray M, Rayner C, Noël F, Jans D, Wagstaff K. Ivermectin and COVID-19: a report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors’ responses. Antiviral Res 2020;178:104805. https://doi.org/10.1016/j.antiviral.2020.104805
15
 Momekov G, Momekova D. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view. medRxiv 2020.04.11.20061804. https://doi.org/10.1101/2020.04.11.20061804
16
Wagstaff K, Rawlinson S, Hearps A, Jans D. Novel Inhibitors of Nuclear Translocation of HIV-1 Integrase. Antiviral Res 2011;90:A48. https://doi.org/10.1016/j.antiviral.2011.03.081
17
Lee YJ, Lee C. Ivermectin inhibits porcine reproductive and respiratory syndrome virus in cultured porcine alveolar macrophages. Arch Virol 2016;161:257-68.
18
Raza S, Shahin F, Zhai W, Li H, Alvisi G, et al.  Ivermectin inhibits bovine herpesvirus 1 DNA polymerase nuclear import and interferes with viral replication. Microorganisms 2020;8:1-15.
19
Azeem S, Ashraf M, Rasheed MA, Anjum AA, Hameed. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pak J Pharm Sci 2015;28:597-602.
20
Varghese FS, Kaukinen P, Gläsker S, Bespalov M, Hanski L, Wennerberg. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res 2016;126:117-24.
21
Chu JJH, Lee RCH, Ang MJY, Wang WL, Lim HA, Wee JLK, et al. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay. Antiviral Res 2015;118:68-74.
22
Croci R, Bottaro E, Chan KWK, Watanabe S, Pezzullo M, Mastrangelo E, et al. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin. Int J Biomater 2016. https://doi.org/10.1155/2016/8043983
23
Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, et al. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Res 2018;159:55-62.
24
Wang X, Lv C, Ji X, Wang B, Qiu L, Yang Z. Ivermectin treatment inhibits the replication of Porcine circovirus 2 (PCV2) in vitro and mitigates the impact of viral infection in piglets. Virus Res 2019;263:80-6.
25
Sanford SE, Rehmtulla AJ, Josephson GKA. Ivermectin overdose and toxicosis in neonatal pigs. Can Vet J 1998;29:735-36.
26
Mastrangelo E, Pezzullo M, De burghgraeve T, Kaptein S, Pastorino B, Dallmeier K, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: New prospects for an old drug. J Antimicrob Chemother 2012;67:1884-94.
27
World Intellectul Property Organisation (WIPO). 2020. WO2011051159 - Avermectıns and mılbemycıns for the treatment of flavıvırus ınfectıons.  Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId= WO2011051159&recNum=29&docAn= EP2010065880&queryString=DORAMECTIN&maxRec=452
28
U.S.Food And Drug Administration (FDA), (2018). Available from: https://animaldrugsatfda.fda.gov/adafda/views/#/search
29
European Medicines Agency (EMA), (2018). Available from: http://www.eudrapharm.eu/eudrapharm/searchbykeywordresult.do
30
Tarım ve Orman Bakanlığı, (2020). Ruhsatlı Veteriner Tıbbi Ürünler, Available from: https://vtu.tarim.gov.tr/FYerli.aspx. 
31
Crump A. Ivermectin: Enigmatic multifaceted “wonder” drug continues to surprise and exceed expectations. J Antibiot (Tokyo) 2017;70:495-505.
32
Ci X, Li H, Yu Q, Zhang X, Yu L, Chen N, et al. Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen-activated protein kinase activation pathway. Fund Clin Pharmacol 2009;23:449-55.
33
Juarez M, Schcolnik-Cabrera A, Dueñas-Gonzalez A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res 2018;8:317-31.
34
El-Ashmawy IM, El-Nahas AF, Bayad AE. Teratogenic and cytogenetic effects of ivermectin and its interaction with P-glycoprotein inhibitor. Res Vet Sci 2011;90:116-23.
35
Schinkel AH, Smit JJ, Van Tellingen O, Beijnen JH, Wagenaar E, Van Deemter L, et al. Disruption of the mouse mdr1a P‐glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 1994;77:491-502.
36
Pimenta PHC, Silva CLM, Noel F. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases. Naunyn-Schmiedeberg’s Arch Pharmacol 2010;381:147-52.
37
EMA, (2004). Committee For Medicinal Products For Veterinary Use EMEA/MRL/915/04-Final Ivermectin (Modification of Maximum Residue Limits) Summary Report (5).
38
Molinari G, Soloneski S, Reigosa MA, Larramendy ML. In vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivomec® on Chinese hamster ovary (CHOK1) cells. J Hazard Mater 2009;165:1074-82.
39
Molinari G, Soloneski, S, Larramendy ML. New ventures in the genotoxic and cytotoxic effects of macrocyclic lactones, Abamectin and Ivermectin. Cytogenet Genome Res 2010;128:37-45.
40
Aleksić N, Barjaktarović N. Investigation on sister chromatid exchange (SCE) by ivermectin. Genetika 1993;25:219-25.
41
Sweify KM, Abd I, Darwish EM, Demerdash D, El A, Hafez M. The cytogenetic potential of ivermectin on bone marrow cells of mice in vivo. OSR-JESTFT, 2015;9:2319-99.
42
Montes V, De La Ossa VJ, Pérez Cordero A.  Comet assay to determine genetic damage by the use of ivermectin in zebu cows ( Bos taurus indicus ). Revista MVZ Córdoba 2017;22:5959-65.
43
Gysi DM, Do Valle I, Zitnik M, Ameli A, Gan X, Varol O, et al. Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19. ArXiv 2020;arXiv:2004.07229v1. Preprint.
44
Mercorelli B, Palù G, Loregian A. Drug Repurposing for Viral Infectious Diseases: How Far Are We? Trends Microbiol 2018;26:865-76.
45
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals.  Virus Res 2019;264:22-31.
2024 ©️ Galenos Publishing House