Klorokin Kronik Hipoksik Kalpte Kir6.2 İmmünoreaktivitesini Azaltır
PDF
Atıf
Paylaş
Talep
P: 168-173
Nisan 2022

Klorokin Kronik Hipoksik Kalpte Kir6.2 İmmünoreaktivitesini Azaltır

Bezmialem Science 2022;10(2):168-173
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 08.11.2020
Kabul Tarihi: 31.03.2021
Yayın Tarihi: 14.04.2022
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Deneysel ve klinik çalışmalar, kardiyovasküler sistem hastalıklarının son yıllarda ölüm oranı en yüksek hastalık grubu olduğunu göstermektedir. Bu yüksek ölüm oranının altında yatan en büyük etkenlerden birisi hipoksidir. İçeri doğrultucu potasyum kanalı 6.2 (Kir6.2) kardiyak dokunun hipoksiye adaptasyonunda ve metabolik düzenlenmesinde rol oynamaktadır. Bu çalışmada, klorokin maddesinin orta şiddette kronik hipoksiye maruz kalan kalp dokusundaki Kir6.2 ifadesine olan etkisi incelenmiştir.

Yöntemler:

Bu çalışmada 32 adet 8-12 haftalık, 200-300 g ağırlığında yetişkin Wistar albino cins erkek sıçanlar, 4 grupta incelenmek üzere kullanıldı. Bu doğrultuda ilk grup normoksik (%21 O2 konsantrasyonunda) ortama, ikinci grup normoksik ortamda günlük klorokin (50 mg/kg intraperitoneal) enjeksiyonuna, üçüncü grup orta şiddette hipoksik (%10 O2 konsantrasyonunda) ortama, dördüncü grup ise hipoksik ortamda klorokin (50 mg/kg intraperitoneal) enjeksiyonuna maruz bırakıldı. Yirmi sekiz günlük sürecin sonunda anestezi altında kalp dokuları sakrifiye edilerek Kir6.2 için immünohistokimyasal analiz yapıldı.

Bulgular:

Hipoksik kalp dokusunda, klorokin uygulamasına bağlı olarak kontrol grubuna kıyasla Kir6.2 immünoreaktivitesinde anlamlı azalma gözlemlendi (p<0,05). Ayrıca, yine klorokin uygulanan hipoksi grubunda, hemorajik alanlar kontrol grubuna kıyasla anlamlı olarak azaldı (p<0,001).

Sonuç:

Bu bulgular, klorokinin hipoksik kalpte potansiyel koruyucu ve adaptif etkilerini göstermiştir. Bununla beraber, Kir6.2 ilişkili mekanizmanın doğrulanması için daha ileri moleküler ve fonksiyonel çalışmalar yapılması gerekmektedir.

References

1
Martin DS, Khosravi M, Grocott MP, Mythen MG. Concepts in hypoxia reborn. Crit Care 2010;14:315.
2
MacIntyre NR. Tissue hypoxia: implications for the respiratory clinician.  Respir Care 2014;59:1590-6.
3
Corno AF, Milano G, Samaja M, Tozzi P, Von Segesser LK. Chronic hypoxia: a model for cyanotic congenital heart defects. J Thorac Cardiovasc Surg 2002;124:105-12.
4
Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, et al. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci U S A 2002;99:13278-83.
5
Kolar F, Ostadal B. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res 2004;53(Suppl 1):S3-13.
6
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010;90:291-366.
7
Zhong CJ, Chen MM, Lu M, Ding JH, Du RH, Hu G. Astrocyte-specific deletion of Kir6. 1/K-ATP channel aggravates cerebral ischemia/reperfusion injury through endoplasmic reticulum stress in mice. Exp Neurol 2019;311.225-33.
8
Cameron JS, DeWitt JP, Ngo TT, Yajnik T, Chan S, Chung E, Kang E. Cardiac K(KATP) channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.). Comp Biochem Physiol A Mol Integr Physiol 2013;164: 554-64.
9
Chen J, Zhu JX, Wilson I, Cameron JS. Cardioprotective effects of K ATP channel activation during hypoxia in goldfish Carassius auratus. J Exp Biol  2005;208:2765-72.
10
Colburn TD, Weber RE, Hageman KS, Caldwell JT, Schulze KM, Ade CJ, et al. Vascular ATP-sensitive K+ channels support maximal aerobic capacity and critical speed via convective and diffusive O2 transport. J Physiol 2020;598:4843-58.
11
Waza AA, Andrabi K, Hussain MU. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal 2014;26:1909-17.
12
Jameel MN, Xiong Q, Mansoor A, Bache RJ, Zhang J. ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart. J Mol Cell Cardiol 2016;92:116-21.
13
Zhu Z, Burnett CM, Maksymov G, Stepniak E, Sierra A, Subbotina E, et al. Reduction in number of sarcolemmal KATP channels slows cardiac action potential duration shortening under hypoxia. Biochem Biophys Res Commun 2011;415:637-41.
14
Zhao G, Joca HC, Nelson MT, Lederer WJ. ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A 2020;117:7461-70.
15
Pascolo S. Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 2016;771:139-44.
16
Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R, Lai N, Wang Z, Yuan JX, Wang J, Makino A. Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. Br J Pharmacol 2020;177:314-27.
17
Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, et al. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia‐induced pulmonary hypertension. Br J Pharmacol 2017;174:4155-72.
18
Zhang DM, Lin YF. Functional modulation of sarcolemmal KATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. Am J Physiol Cell Physiol 2020;319:C194-C207.
19
Zi C, Zhang C, Yang Y, Ma J. Penehyclidine hydrochloride protects against anoxia/reoxygenation injury in cardiomyocytes through ATP‐sensitive potassium channels, and the Akt/GSK‐3b and Akt/mTOR signaling pathways. Cell Biol Int 2020;44:1353-62.
20
Dewitte A, Villeneuve J, Lepreux S, Bouchecareilh M, Gauthereau X, Rigothier C, et al. CD154 Induces Interleukin-6 Secretion by Kidney Tubular Epithelial Cells under Hypoxic Conditions: Inhibition by Chloroquine. Mediators Inflamm 2020;2020:6357046.
21
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020;56:106057.
2024 ©️ Galenos Publishing House