Sporadik Türk Kolorektal Karsinomalı Hastalarda Metilasyon Profili ve Mikrosatellit İnstabilitesi
PDF
Atıf
Paylaş
Talep
P: 86-94
Nisan 2019

Sporadik Türk Kolorektal Karsinomalı Hastalarda Metilasyon Profili ve Mikrosatellit İnstabilitesi

Bezmialem Science 2019;7(2):86-94
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 23.03.2018
Kabul Tarihi: 02.04.2018
Yayın Tarihi: 10.05.2019
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Bu çalışmanın amacı; kolorektal kanserli olguların parafin bloklarından elde edilen genomik DNA’da 6 farklı gen bölgesinin promoter metilasyonu ve mikrosatellite instabilitesini araştırmak ve bunların kolorektal kanser gelişimindeki önemini değerlendirmektir.

Yöntemler:

Yetmiş altı sporadik kolorektal kanserli olguya ait parafin dokusundan tümörlü olduğu belirlenen bölgelerden kesit alınarak DNA izolasyonu gerçekleştirilmiştir. Bu DNA örneklerinden metilasyon spesifik-PCZ (MS-PZR) yöntemi ile APC, hMLH1, p16INK4A, p15, p73 ve DAPK1 genlerine ait promoter bölgesi metilasyonu araştırılmıştır, aynı zamanda mikrosatellit instabilitesi (MSI) varlığı 3 farklı STR bölgesi incelenerek belirlenmiştir.

Bulgular:

Hasta örneklerimize ait genlerin metilasyon oranlarını hMLH1 için %24, APC için %31,5, DAPK1 için %19,6, p16 için %42,8, p15 için %30, p73 için %17 bulduk. Verilerin daha iyi anlaşılması için metilasyon indeksi (Mİ) hesaplandı. Bir örnek için metile olan gen sayısının analiz edilen gen sayısına oranı şeklinde hesapladığımız Mİ değeri 0-0,83 arasında bulundu. Ortalama Mİ 0,271 idi (1,6 gen/numuneye karşılık gelir) ve medyan değeri 0,225 idi. Herhangi bir lokusta metilasyona uğramayan 15 örnek vardı. MSİ’yi C-kit (21%), hMSH2 (18%) ve APC (15%) mikrosatellit bölgelerinde analiz ettik.

Sonuç:

Literatüre göre Türk populasyonunda APC metilasyonunun diğer popülasyondan daha sık olduğunu belirledik. P16 promoter metilasyonunun 6 gen arasında en fazla metilasyona uğrayan lokus olduğu ve kadın hastalarda daha sık metillendiği görülmüştür. P73 metilasyonu ise sıklıkla sol kolorektal kanserlerde belirlenmiş ve ek olarak da MSİ ile ilişkili bulunmuştur.

References

1
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86.
2
Parkin DM, Muir CS, Whelan SL, Gao JT, Ferlay J, Powell J. Cancer incidence in five continents. Lyon (France): International Agency for Research on Cancer; 1992.
3
Muir C, Waterhouse J, Mack T, Powell J, Whelan S, Smans M, et al. Cancer incidence in five continents. Lyon (France): International Agency for Research on Cancer; 1987.
4
McMichael AJ, Giles GG. Cancer in migrants to Australia: extending the descriptive epidemiological data. Cancer Res 1988;48:751-6.
5
Haenszel W. Cancer mortality among the foreign born in the United States. J Natl Cancer Inst 1961;26:37-132.
6
Veale AM. Intestinal polyposis. Cambridge (U.K.): Cambridge University Press; 1965.
7
Utsunomiya J, Lynch HT. Hereditary colorectal cancer. New York (NY): Springer-Verlag; 1990.
8
Gardner EJ. A genetic and clinical study of intestinal polyposis, a predisposing factor for carcinoma of the colon and rectum. Am J Hum Genet 1951;3:167-76.
9
Pharoah PD, Caldas C. Moleculer genetics and assessment of human cancers Experts reviews in Moleculer Medicine. Cambridge University Press ISSN 1462-3994
10
Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal tumor development. N Eng J Med 1988;319:525-32.
11
Jass JR, Whitehall VL, Young J, Leggett BA. Emerging concepts in colorectal neoplasia. Gastroenterology 2002;123:862-76.
12
Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J MolDiagn 2008;10:13-27.
13
Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997;386:623-7.
14
Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330-7.
15
Kaneda A, Yagi K. Two groups of DNA methylation markers to classify colorectal cancer into three epigenotypes. Cancer Sci 2011;102:18-24.
16
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl AcadSci U S A. 1999;96:8681-6.
17
Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl AcadSci U S A 2007;104:18654-9.
18
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015;21:1350-6.
19
Müller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch 2016;469:125-34.
20
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 2017;17:79-92.
21
Takahashi Y, Sugai T, Habano W, Ishida K, Eizuka M, Otsuka K, et al. Molecular differences in the microsatellite stable phenotype between left-sided and right-sided colorectal cancer. Int J Cancer 2016;139:2493-501.
22
Sugai T, Habano W, Jiao Y-F, Tsukahara M, Takeda Y, Otsuka K, et al. Analysis of molecular alterations in left- and right-sided colorectal carcinomas reveals distinct pathways of carcinogenesis: proposal for new molecular profile of colorectal carcinomas. J MolDiagn 2006;8:193-201.
23
Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer 2011;11:726-34.
24
Lange CP, Campan M, Hinoue T, Schmitz RF, van der Meulen-de Jong AE, Slingerland H, et al. Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PLoS One 2012;7:e50266.
25
Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 2008;54:414-23.
26
Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med 2011;9:133.
27
Baba Y, Murata A, Watanabe M, Baba H. Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg Today 2014;44:1807-16.
28
Miousse IR, Chalbot MC, Aykin-Burns N, Wang X, Basnakian A, Kavouras IG, et al. Epigenetic alterations induced by ambient particulate matter in mouse macrophages. Environ Mol Mutagen 2014;55:428-35.
29
Murata A, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al. Methylation levels of LINE-1 in primary lesion and matched metastatic lesions of colorectal cancer. Br J Cancer 2013;109:408-15.
30
Ekmekci CG, Gutiérrez MI, Siraj AK, Ozbek U, Bhatia K. Aberrant methylation of multiple tumor suppressor genes in Acute Myeloid Leukemia. Am J Hematol 2004;77:233-40.
31
Xu XL, Yu J, Zhang HY, Sun MH, Gu J, Du X, et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 2004;10:3441-54.
32
Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet 2010;201:128-32.
33
Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 2001;10:3001-7.
34
Jost CA, Marin MC, Kaelin Jr WG. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature, Sep 1997;389:191-4.
35
Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998;4:839-43.
36
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998;2:305-16.
37
Zhu J, Jiang J, Zhou W, Chen X. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 1998;58:5061-5.
38
Wang W-J, Kuo J-C, Yao CC, Chen R-H. DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 2002;159:169-79.
39
Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996;87:159-70.
40
Rubinfeld B, Souza B, Albert I, Müller O, Chamberlain SH, Masiarz FR, et al. Association of the APC gene product with beta-catenin. Science 1993;262:1731-4.
41
Smith KJ, Levy DB, Maupin P, Pollard TD, Vogelstein B, Kinzler KW. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 1994;54:3672-5.
42
Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997;275:1784-7.
43
Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, et al. Analysis of adenomatous polyposis coll promoter hypermethylation in human cancer. Cancer Res 2000;60:4366-71.
44
Arnold CN, Goel A, Niedzwiecki D, Dowell JM, Wasserman L, Compton C, et al. APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q. Cancer Biol Ther 2004;3:960-4.
45
Bisogna M., Calvano JE, Ho GH, Orlow I, Cordón-Cardó C, Borgen PI,et al. Molecular analysis of the INK4A and INK4B gene loci in human breast cancer cell lines and primary carcinomas. Cancer Genet Cytogenet 2001;125:131-8.
46
Hibi K., Nakayama H, Koike M, Kasai Y, Ito K, Akiyama S, et al. Colorectal cancers with both p16 and p14 methylation show invasive characteristics. Jpn J Cancer Res 2002;93:883-7.
47
Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993;363:558-61.
48
Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 1998;58:1713-8.
49
Jass JR, Iino H, Ruszkiewicz A, Painter D, Solomon MJ, Koorey DJ, et al. Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum. Gut 2000;47:43-9.
50
Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L, et al. Frequent Inactivation of PTEN by Promoter Hypermethylation in Microsatellite Instability-High Sporadic Colorectal Cancers. Cancer Res 2004;64:3014-21.
2024 ©️ Galenos Publishing House