Restoratif Dental Materyallere Uygulanan Farklı Ağız Gargaralarının <i>Streptokokus mutans</i> Adezyonunda Etkisinin <i>İn Vitro</i> Olarak İncelenmesi
PDF
Atıf
Paylaş
Talep
P: 371-379
Ekim 2023

Restoratif Dental Materyallere Uygulanan Farklı Ağız Gargaralarının Streptokokus mutans Adezyonunda Etkisinin İn Vitro Olarak İncelenmesi

Bezmialem Science 2023;11(4):371-379
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 11.03.2023
Kabul Tarihi: 16.07.2023
Yayın Tarihi: 25.10.2023
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Bu çalışma, üç farklı restoratif dental materyale uygulanan klorheksidin glukonat (CHX), Listerin ve borik asidin (BA) Streptococcus mutans (S. mutans) adezyonu üzerindeki etkisini değerlendirmeyi amaçlamaktadır.

Yöntemler:

Çalışmada toplam 120 adet numune hazırlandı: Kompozit reçine (Grup CR; n=40), cam iyonomer siman (Grup GIC; n=40) ve kompomer (Grup C; n=40). Numunelerin alt ve üst yüzey pürüzlülükleri ölçüldü. Bakteriyel adezyonlardan sonra her grup dört alt gruba ayrıldı (n=10). Bir dakika boyunca üç gargara ve distile su uygulandı. Ardından, kalan S. mutans biyofilmleri koloni oluşturan birim sayısı (CFU) ve MTT yöntemleriyle incelendi. Veriler istatistiksel olarak değerlendirildi (p<0,05).

Bulgular:

Yüzey pürüzlülüğü açısından GIC en yüksek, CR en düşüktü. Üç grup arasında fark vardı (p<0,001). Üç gargaranın tümünün bakteri sayımlarının Log CFU etkinliği, distile sudan daha yüksekti (p<0,001). Üç gargara ve distile suyun S. mutans log CFU ve MTT değerleri üzerindeki etkisi gruplar arasında farklılık gösterdi (p<0,001). CHX en etkili olanıydı. Restoratif materyal-gargara etkileşimleri açısından gruplar arasında fark bulundu (p<0,05). Log CFU ve MTT değerleri arasında pozitif orta derecede istatistiksel olarak anlamlı bir korelasyon vardı (r=0,636; p<0,001).

Sonuç:

BA, doğal yapısı ve yan etkilerinin minimal olması nedeniyle diğer gargaralara alternatif olabilir.

References

1
Engel AS, Kranz HT, Schneider M, Tietze JP, Piwowarcyk A, Kuzius T, et al. Biofilm formation on different dental restorative materials in the oral cavity. BMC Oral Health 2020;20:162:1-10.
2
Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 2003;19:449-57.
3
van Dijken JW. A clinical evaluation of anterior conventional, microfiller, and hybrid composite resin fillings. A 6-year follow-up study. Acta Odontol Scand 1986;44:357-67.
4
Dutra D, Pereira G, Kantorski KZ, Valandro LF, Zanatta FB. Does Finishing and Polishing of Restorative Materials Affect Bacterial Adhesion and Biofilm Formation? A Systematic Review. Oper Dent 2018;43:37-52.
5
Rupesh S, Winnier JJ, Nayak UA, Rao AP, Reddy NV. Comparative evaluation of the effects of an alum-containing mouthrinse and a saturated saline rinse on the salivary levels of Streptococcus mutans. J Indian Soc Pedod Prev Dent 2010;28:138-44.
6
Aneja KR, Radhika J, Sharma C. The antimicrobial potential of ten often used mouthwashes against four dental caries pathogens. Jundishapur J Microbiol 2010;3:15-27.
7
Axelsson P. Current role of pharmaceuticals in prevention of caries and periodontal disease. Int Dent J 1993;43:473-82.
8
Fischman SL. A clinician’s perspective on antimicrobial mouthrinses. J Am Dent Assoc 1994;125(Suppl 2):20-2.
9
Shah S, Bargale S, Dave BH, Deshpande A, Kariya PB, Karri A. Comparison of Antimicrobial Efficacy of (between) 0.2% Chlorhexidine and Herbal Mouthwash on Salivary Streptococcus mutans: A Randomized Controlled Pilot Study. Contemp Clin Dent 2018;9:440-5.
10
Jones CG. Chlorhexidine: Is it still the gold standard? Periodontol 2000 1997;15:55-62.
11
Kara R. Examination of Streptococcus mutans adhesion in current hybrid ceramics and composites. Int J Dent Sci Res 2020;8:138-42.
12
Ruiz-Linares M, Ferrer-Luque CM, Arias-Moliz T, de Castro P, Aguado B, Baca P. Antimicrobial activity of alexidine, chlorhexidine and cetrimide against Streptococcus mutans biofilm. Ann Clin Microbiol Antimicrob 2014;13:1-6.
13
Sağlam M, Arslan U, Buket Bozkurt Ş, Hakki SS. Boric acid irrigation as an adjunct to mechanical periodontal therapy in patients with chronic periodontitis: a randomized clinical trial. J Periodontol 2013;84:1297-308.
14
Cheng L, Zhang K, Zhou CC, Weir MD, Zhou XD, Xu HH. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci 2016;8:172-81.
15
da Silva WJ, Seneviratne J, Parahitiyawa N, Rosa EA, Samaranayake LP, Del Bel Cury AA. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 2008;19:364-9.
16
Konishi N, Torii Y, Kurosaki A, Takatsuka T, Itota T, Yoshiyama M. Confocal laser scanning microscopic analysis of early plaque formed on resin composite and human enamel. J Oral Rehabil 2003;30:790-5.
17
Ikeda M, Matin K, Nikaido T, Foxton RM, Tagami J. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites. Dent Mater J 2007;26:915-23.
18
Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, et al. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials 2004;25:4457-63.
19
Stanković-Pešić J, Kostić M, Igić M, Dordević V. Biofilm formation on dental materials. Acta Stomatol Naissi 2018;34:1821-31.
20
Kozmos M, Virant P, Rojko F, Abram A, Rudolf R, Raspor P, et al. Bacterial Adhesion of Streptococcus mutans to Dental Material Surfaces. Molecules 2021;26:1152.
21
Poggio C, Arciola CR, Rosti F, Scribante A, Saino E, Visai L. Adhesion of Streptococcus mutans to different restorative materials. Int J Artif Organs 2009;32:671-7.
22
Eick S, Glockmann E, Brandl B, Pfister W. Adherence of Streptococcus mutans to various restorative materials in a continuous flow system. J Oral Rehabil 2004;31:278-85.
23
Yuan C, Wang X, Gao X, Chen F, Liang X, Li D. Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J Dent 2016;54:33-40.
24
Carlén A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 2001;22:481-7.
25
Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997;13:258-69.
26
Weitman RT, Eames WB. Plaque accumulation on composite surfaces after various finising procedures. J Am Dent Assoc 1975;91:101-6.
27
Park JW, An JS, Lim WH, Lim BS, Ahn SJ. Microbial changes in biofilms on composite resins with different surface roughness: An in vitro study with a multispecies biofilm model. J Prosthet Dent 2019;122:493.
28
Rosen M, Grossman E, Cleaton-Jones PE, Volchansky A. Surface roughness of aesthetic restorative materials: an in vitro comparison. SADJ 2001;56:316-20.
29
Pedrini D, Candido MS, Rodrigues AL. Analysis of surface roughness of glass-ionomer cements and compomer. J Oral Rehabil 2003;30:714-9.
30
Spencer P, Ye Q, Misra A, Goncalves SE, Laurence JS. Proteins, pathogens, and failure at the composite-tooth interface. J Dent Res 2014;93:1243-9.
31
Pandit S, Kim GR, Lee MH, Jeon JG. Evaluation of Streptococcus mutans biofilms formed on fluoride releasing and non-fluoride releasing resin composites. J Dent 2011;39:780-7.
32
Shani S, Friedman M, Steinberg D. The anticariogenic effect of amine fluorides on Streptococcus sobrinus and glucosyltransferase in biofilms. Caries Res 2000;34:260-7.
33
Gajewski VES, Pfeifer CS, Fróes-Salgado NRG, Boaro LCC, Braga RR. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012;23:508-14.
34
Kumar SR, Patnaik A, Bhat IK. Physical and thermo-mechanical characterizations of resin-based dental composite reinforced with Silane-Modified nanoalumina filler particle. Proc Inst Mech Eng Part L J Mater Des Appl 2016;230:504-14.
35
Bottino MA, Pereira SMB, Amaral M, Milhan NVM, Pereira CA, Camargo SEA, et al. Do dental resin composites accumulate more oral biofilms and plaque than amalgam and glass ionomer materials? Materials (Basel) 2019;44:E271-8.
36
Barnett ML. The rationale for the daily use of an antimicrobial mouthrinse. J Am Dent Assoc 2006;137(Suppl):16-21.
37
Balappanavar AY, Sardana V, Singh M. Comparison of the effectiveness of 0.5% tea, 2% neem and 0.2% chlorhexidine mouthwashes on oral health: a randomized control trial. Indian J Dent Res 2013;24:26-34.
38
Haydari M, Bardakci AG, Koldsland OC, Aass AM, Sandvik L, Preus HR. Comparing the effect of 0.06% -, 0.12% and 0.2% Chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: a parallel group, double masked randomized clinical trial. BMC Oral Health 2017;17:1-8.
39
Agarwal P, Nagesh L. Comparative evaluation of efficacy of 0.2% Chlorhexidine, Listerine and Tulsi extract mouth rinses on salivary Streptococcus mutans count of high school children-RCT. Contemp Clin Trials 2011;32:802-8.
40
Charles CH, Mostler KM, Bartels LL, Mankodi SM. Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6-month clinical trial. J Clin Periodontol 2004;31:878-84.
41
Bascones A, Morante S, Mateos L, Mata M, Poblet J. Influence of additional active ingredients on the effectiveness of non-alcoholic chlorhexidine mouthwashes: a randomized controlled trial. J Periodontol 2005;76:1469-1475.
42
Martínez-Hernández M, Reda B, Hannig M. Chlorhexidine rinsing inhibits biofilm formation and causes biofilm disruption on dental enamel in situ. Clin Oral Investig 2020;24:3843-53.
43
Lang NP, Lindhe J. Clinical periodontology and implant dentistry. 6th ed. London: Wiley-Blackwell; 2015.
44
Baffone W, Sorgente G, Campana R, Patrone V, Sisti D, Falcioni T. Comparative effect of chlorhexidine and some mouthrinses on bacterial biofilm formation on titanium surface. Curr Microbiol 2011;62:445-51.
45
Fine DH, Furgang D, Barnett ML, Drew C, Steinberg L, Charles CH, et al. Effect of an essential oil-containing antiseptic mouthrinse on plaque and salivary Streptococcus mutans levels. J Clin Periodontol 2000;27:157-61.
46
Bugno A, Aparecida Nicoletti M, Almodovar AAB, Pereira TC, Auricchio MT. Enxaguatórios bucais: avaliação da eficácia antimicrobiana de produtos comercialmente disponíveis. Rev Inst Adolfo Lutz 2006;65:40-5.
47
Zamora-Perez AL, Mariaud-Schmidt RP, Fuentes-Lerma MG, Guerrero-Velázquez C, Gómez-Meda BC, López-Verdín S, et al. Increased number of micronuclei and nuclear anomalies in buccal mucosa cells from people exposed to alcohol-containing mouthwash. Drug Chem Toxicol 2013;36:255-60.
48
Fox LT, Gerber M, Du Plessis J, Hamman JH. Transdermal drug delivery enhancement by compounds of natural origin. Molecules 2011;16:10507-40.
49
Schmidt M, Schaumberg JZ, Steen CM, Boyer MP. Boric acid disturbs cell wall synthesis in Saccharomyces cerevisiae. Int J Microbiol 2010;2010:930465.
50
Zan R, Hubbezoglu I, Ozdemir AK, Tunc T, Sumer Z, Alıcı O. Antibacterial Effect of Different Concentration of Boric acid against Enterococcus Faecalis Biofilms in Root Canal. Marmara Dent J 2013;1:76-80.
51
Kanoriya D, Singhal S, Garg V, Pradeep AR, Garg S, Kumar A. Clinical efficacy of subgingivally-delivered 0.75% boric acid gel as an adjunct to mechanotherapy in chronic periodontitis: A randomized, controlled clinical trial. J Investig Clin Dent 2018:9.
52
Kuru R, Yarat A. Boron and a Current Overview of its Effects On Health. Clin Exp Health Sci 2017;7:107-14.
53
Hakki S, Nielsen F. Boron and Human Health. In: Anti-inflammatory and anti-microbial potentials of boron in medicine and dentistry. 2020:67-82.
54
Scheler O, Pacocha N, Debski PR, Ruszczak A, Kaminski TS, Garstecki P. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond. Lab Chip 2017;17:1980-7.
2024 ©️ Galenos Publishing House