Prospektif Bir Çalışma; ACR 2017 TI-RADS’a Göre Benign ve Benign Olmayan Tiroid Nodüllerinin Ayırımında Shear-wave Elastografinin Rolü
PDF
Atıf
Paylaş
Talep
P: 295-299
Temmuz 2023

Prospektif Bir Çalışma; ACR 2017 TI-RADS’a Göre Benign ve Benign Olmayan Tiroid Nodüllerinin Ayırımında Shear-wave Elastografinin Rolü

Bezmialem Science 2023;11(3):295-299
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 09.10.2022
Kabul Tarihi: 31.12.2022
Yayın Tarihi: 25.07.2023
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Benign ve benign olmayan tiroid nodülleri arasındaki ayrım, klinik pratikte çözülmesi gereken karmaşık bir problemdir. Bu çalışma, ince iğne aspirasyon biyopsisi (İİAB) öncesinde benign ve benign olmayan tiroid nodüllerini ayırt etmede shear-wave elastografinin (SWE) rolünü gözlemlemeyi ve tanımlamayı amaçlamaktadır.

Yöntemler:

Mart 2019-Ocak 2020 tarihleri arasında tiroid nodülü olan 97 hasta prospektif olarak çalışmaya dahil edildi. Otoimmin tiroid hasalığı, tiroid cerrahisi, travması veya enfeksiyonu, tanısal olmayan histopatolojisi (Bethesda 1) olan hastalar çalışma dışı bırakıldı. Radyolojik sınıflandırma için 2017 American College of Radiology (ACR) tiroid görüntüleme raporlama ve veri sistemi (TIRADS) kullanıldı. Hastaların yaşı, tiroid nodül sayısı, nodüllerin SWE değeri ve TI-RADS kategorileri patolojik sınıflarına göre karşılaştırıldı.

Bulgular:

Hastaların ortalama yaşı 49,80±11,42 yıl idi. Olgular patolojik tanılarına göre “Grup 1” (G1) (n=79) ve “Grup 2” (G2) (n=12) olarak iki gruba ayrıldı. Benign ve benign olmayan grupdaki hastaların medyan SWE değerleri sırasıyla 9,47 (7,48) ve 47,38 (51,46) kPa idi. G2’nin medyan SWE değerleri G1’den yüksekti ve bu fark istatistiksel olarak anlamlı olarak bulundu (p=0,001). G1’deki hastaların yaklaşık %50’si TI-RADS kategori 3 iken, T1-RADS 5 oranı G2’deki hastaların %40’ının üzerindeydi.

Sonuç:

2017 ACR’ye dayalı TI-RADS sınıflamasına ek olarak, tiroid nodüllerinin shear-wave elastografi ölçümleri İİAB öncesi benign ve benign olmayan tiroid nodüllerinin ayrımında kullanılabilir. Bu nedenle, tanının özgüllüğünü, duyarlılığını ve doğruluğunu artırmak için her iki yöntem birlikte uygulanabilir.

References

1
Niedziela M. Thyroid nodules. Best Pract Res Clin Endocrinol Metab 2014;28:245-77.
2
Lim DJ, Luo S, Kim MH, Ko SH, Kim Y. Interobserver agreement and intraobserver reproducibility in thyroid ultrasound elastography. AJR Am J Roentgenol 2012;198:896-901.
3
Kyriakidou G, Friedrich-Rust M, Bon D, Sircar I, Schrecker C, Bogdanou D, et al. Comparison of strain elastography, point shear wave elastography using acoustic radiation force impulse imaging and 2D-shear wave elastography for the differentiation of thyroid nodules. PLoS One 2018;13:e0204095.
4
Yang YP, Xu XH, Guo LH, He YP, Wang D, Liu BJ, et al. Qualitative and quantitative analysis with a novel shear wave speed imaging for differential diagnosis of breast lesions. Sci Rep 2017;7:40964.
5
Alfuraih AM, O’Connor P, Hensor E, Tan AL, Emery P, Wakefield RJ. The effect of unit, depth, and probe load on the reliability of muscle shear wave elastography: Variables affecting reliability of SWE. J Clin Ultrasound 2018;46:108-15.
6
Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009;94:1748-51.
7
T Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol 2017;14:587-95.
8
Kagoya R, Monobe H, Tojima H. Utility of elastography for differential diagnosis of benign and malignant thyroid nodules. Otolaryngol Head Neck Surg 2010;143:230-4.
9
Vorländer C, Wolff J, Saalabian S, Lienenlüke RH, Wahl RA. Real-time ultrasound elastography--a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg 2010;395:865-71.
10
Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US Features of thyroid malignancy: pearls and pitfalls. Radiographics 2007;27:847-65.
11
Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017;27:1341-6.
12
He YP, Xu HX, Li XL, Li DD, Bo XW, Zhao CK, et al. Comparison of Virtual Touch Tissue Imaging & Quantification (VTIQ) and Toshiba shear wave elastography (T-SWE) in diagnosis of thyroid nodules: Initial experience. Clin Hemorheol Microcirc 2017;66:15-26.
13
Hu X, Liu Y, Qian L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules: A systematic review and meta-analysis. Medicine (Baltimore) 2017;96:e8282.
14
Tian W, Hao S, Gao B, Jiang Y, Zhang X, Zhang S, et al. Comparing the Diagnostic Accuracy of RTE and SWE in Differentiating Malignant Thyroid Nodules from Benign Ones: a Meta-Analysis. Cell Physiol Biochem 2016;39:2451-63.
15
Lin P, Chen M, Liu B, Wang S, Li X. Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol 2014;24:2729-38.
16
Ma BY, Parajuly SS, Ying SX, Lan PY. Application of shear wave elastography in fine needle aspiration biopsy for thyroid nodule. J Pak Med Assoc 2014;64:954-7.
17
Chen M, Zhang KQ, Xu YF, Zhang SM, Cao Y, Sun WQ. Shear wave elastography and contrast-enhanced ultrasonography in the diagnosis of thyroid malignant nodules. Mol Clin Oncol 2016;5:724-30.
18
Liu Z, Jing H, Han X, Shao H, Sun YX, Wang QC, et al. Shear wave elastography combined with the thyroid imaging reporting and data system for malignancy risk stratification in thyroid nodules. Oncotarget 2017;8:43406-16.
19
Park AY, Son EJ, Han K, Youk JH, Kim JA, Park CS. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol 2015;84:407-12.
20
Duan SB, Yu J, Li X, Han ZY, Zhai HY, Liang P. Diagnostic value of two-dimensional shear wave elastography in papillary thyroid microcarcinoma. Onco Targets Ther 2016;9:1311-7.
21
He YP, Xu HX, Wang D, Li XL, Ren WW, Zhao CK, et al. First experience of comparisons between two different shear wave speed imaging systems in differentiating malignant from benign thyroid nodules. Clin Hemorheol Microcirc 2017;65:349-61.
22
Kim H, Kim JA, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol 2013;23:2532-7.
23
Bhatia KS, Lam AC, Pang SW, Wang D, Ahuja AT. Feasibility Study of Texture Analysis Using Ultrasound Shear Wave Elastography to Predict Malignancy in Thyroid Nodules. Ultrasound Med Biol 2016;42:1671-80.
24
Tian W, Hao S, Gao B, Jiang Y, Zhang S, Guo L, et al. Comparison of Diagnostic Accuracy of Real-Time Elastography and Shear Wave Elastography in Differentiation Malignant From Benign Thyroid Nodules. Medicine (Baltimore) 2015;94:e2312.
25
Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol 2012;22:2397-406.
26
Bardet S, Ciappuccini R, Pellot-Barakat C, Monpeyssen H, Michels JJ, Tissier F, et al. Shear Wave Elastography in Thyroid Nodules with Indeterminate Cytology: Results of a Prospective Bicentric Study. Thyroid 2017;27:1441-9.
27
Dobruch-Sobczak K, Zalewska EB, Gumińska A, Słapa RZ, Mlosek K, Wareluk P, et al. Diagnostic Performance of Shear Wave Elastography Parameters Alone and in Combination with Conventional B-Mode Ultrasound Parameters for the Characterization of Thyroid Nodules: A Prospective, Dual-Center Study. Ultrasound Med Biol 2016;42:2803-11.
28
Liu B, Liang J, Zheng Y, Xie X, Huang G, Zhou L, et al. Two-dimensional shear wave elastography as promising diagnostic tool for predicting malignant thyroid nodules: a prospective single-centre experience. Eur Radiol 2015;25:624-34.
29
Wang F, Chang C, Gao Y, Chen YL, Chen M, Feng LQ. Does Shear Wave Elastography Provide Additional Value in the Evaluation of Thyroid Nodules That Are Suspicious for Malignancy? J Ultrasound Med 2016;35:2397-404.
30
Zhang WB, Li JJ, Chen XY, He BL, Shen RH, Liu H, et al. SWE combined with ACR TI-RADS categories for malignancy risk stratification of thyroid nodules with indeterminate FNA cytology. Clin Hemorheol Microcirc 2020;76:381-90.
31
Xu X, He XL, Guo LL. [The diagnostic value of the maximum value of Young’s modulus of shear-wave elastography and ACR TI-RADS for thyroid nodules]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2019;33:764-7.
32
Bora Makal G, Aslan A. The Diagnostic Value of the American College of Radiology Thyroid Imaging Reporting and Data System Classification and Shear-Wave Elastography for the Differentiation of Thyroid Nodules. Ultrasound Med Biol 2021;47:1227-34.
33
J Jin ZQ, Yu HZ, Mo CJ, Su RQ. Clinical Study of the Prediction of Malignancy in Thyroid Nodules: Modified Score versus 2017 American College of Radiology’s Thyroid Imaging Reporting and Data System Ultrasound Lexicon. Ultrasound Med Biol 2019;45:1627-37.
34
Abd ellah MMH, Bamidele JO, Debbage P, Taljanovic M, Jaschke W, Klauser AS. Future of musculoskeletal ultrasound. Curr Radiol Rep 2015;3:21.
2024 ©️ Galenos Publishing House