COVİD-19 Tedavisi için Cordysceps Cinsinden Gelen Potansiyel İlaçlar: Bir Derleme Çalışması
PDF
Atıf
Paylaş
Talep
P: 140-144
Temmuz 2020

COVİD-19 Tedavisi için Cordysceps Cinsinden Gelen Potansiyel İlaçlar: Bir Derleme Çalışması

Bezmialem Science 2020;8(3):140-144
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 29.04.2020
Kabul Tarihi: 03.06.2020
Yayın Tarihi: 18.12.2020
PDF
Atıf
Paylaş
Talep

ÖZET

Şiddetli akut solunum yolu enfeksiyonu-koronavirüs-2 (SARS-CoV- 2) olarak adlandırılan yeni bir koronavirüs (2019-nCoV), ilk olarak Aralık 2019’da Vuhan, Çin’de tespit edildi. SARS-CoV-2’nin neden olduğu COVID-19 oldukça bulaşıcıdır ve genel halsizlik, baş ağrısı, baş dönmesi, ateş, öksürük ve nefes darlığından akut solunum sıkıntısı sendromu ve multiorgan yetmezliği olan şiddetli hipoksiye kadar hafif ile şiddetli semptomlara sahiptir. Virüsün patofizyolojisinin belirsizliği ve hedefe yönelik bir tedavinin olmaması, doktorlar için hastalığı tedavi etmeyi çok zorlaştırır. Cordyceps sinensis ve Cordyceps militaris, Geleneksel Çin Tıbbında anti-enflamatuvar, immünomodülatör, akciğer iyileştirici ve antiviral fonksiyonları için kullanılan entomopatojenik mantarlardır. Bu nedenle, C. sinensis ve C. militaris için yapılan ileri araştırmalar, bu mantarlardan elde edilen çeşitli bileşiklerin düşünülen işlevlere sahip olduklarını kanıtlamıştır. Bu derleme, daha önce yapılan çalışmalar ışığında, C. sinensis ve C. militaris’in COVID-19 tedavisi için kullanılıp kullanılamayacağını tartışmayı amaçlamaktadır.

References

1
Richman DD, Whitley RJ, Hayden FG. Clinical virology. 4th ed. Hoboken, NJ; John Wiley & Sons: 2016.
2
Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020;28:391-5.
3
Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020;323:1406-7.
4
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.
5
de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, et al. Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 2013;87:7790-2.
6
Wevers BA, van der Hoek L. Recently discovered human coronaviruses. Clin Lab Med 2009;29:715-24.
7
Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol 2020:108427.
8
Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020.
9
Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020;76:71-6.
10
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
11
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13.
12
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a proinflammatory Th1 and Th17 cytokine profile. Cytokine 2018;104:8-13.
13
Wong C, Lam C, Wu A, Ip W, Lee N, Chan I, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exper Immunol 2004;136:95-103.
14
Zhou Y, Fu B, Zheng X, Wang D, Zhao C. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev 2020:nwaa041.Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020:102434.
15
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020;382:1787-99.
16
Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied microbiology and biotechnology 2002;60:258-74.
17
Akgul H, Sevindik M, Coban C, Alli H, Selamoglu Z. New approaches in traditional and complementary alternative medicine practices: Auricularia auricula and Trametes versicolor. J Tradit Med Clin Natur 2017;6:2.
18
Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Crit Rev Immunol
19
1999;19:65-96.Wani BA, Bodha R, Wani A. Nutritional and medicinal importance of mushrooms. J Med Plants Res 2010;4:2598-604.
20
Wang S, Marcone MF. The biochemistry and biological properties of the world’s most expensive underground edible mushroom: Truffles. Food Res Int 2011;44:2567-81.
21
Villares A, García-Lafuente A, Guillamón E, Ramos Á. Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. Journal of food composition and analysis 2012;26:177-82.
22
He J-Z, Ru Q-M, Dong D-D, Sun P-L. Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules 2012;17:4373-87.
23
Gomes DCV, de Alencar MVOB, Dos Reis AC, de Lima RMT, de Oliveira Santos JV, da Mata AMOF, et al. Antioxidant, anti-inflammatory and cytotoxic/antitumoral bioactives from the phylum Basidiomycota and their possible mechanisms of action. Biomed Pharmacother 2019;112:108643.
24
Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 2012;12:R116.
25
SP UL, Yang F, Karl W. Quality control of Cordyceps sinensis, avaluedtraditionalChinesemedicine [J1. Pharm Biomed Anal 2006;41:1571-84.
26
Zhu J-S, Halpern GM, Jones K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis Part I. J Altern Complement Med Fall 1998;4:289-303Jordan J, Sullivan A, Lee T. Immune activation by a sterile aqueous extract of Cordyceps sinensis: mechanism of action. Immunopharmacol Immunotoxicol 2008;30:53-70.
27
Singh M, Tulsawani R, Koganti P, Chauhan A, Manickam M, Misra K. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. Biomed Res Int 2013;2013:569206Fu S, Lu W, Yu W, Hu J. Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice. Biosci Rep 2019;39: BSR20190789Chen M, Cheung FW, Chan MH, Hui PK, Ip S-P, Ling YH, et al. Protective roles of Cordyceps on lung fibrosis in cellular and rat models. J Ethnopharmacol 2012;143:448-54.
28
Wang S, Bai W, Wang C, Dai Z. Effects of cordyceps sinensi on bleomycin-induced pulmonary fibrosis in mice. Zhongguo Zhong Yao Za Zhi 2007;32:2623-7.
29
Xu H, Li S, Lin Y, Liu R, Gu Y, Liao D. Effectiveness of cultured Cordyceps sinensis combined with glucocorticosteroid on pulmonary fibrosis induced by bleomycin in rats. Zhongguo Zhong Yao Za Zhi 2011;36:2265-70.
30
Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin D-J, et al. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 2006;545:192-9.
31
Yang X, Li Y, He Y, Li T, Wang W, Zhang J, et al. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. Int Immunopharmacol 2015;26:401-8.
32
Mueller WE, Weiler BE, Charubala R, Pfleiderer W, Leserman L, Sobol RW, et al. Cordycepin analogs of 2’, 5’-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry 1991;30:2027-33.
33
Jiang Y, Wong J, Fu M, Ng T, Liu Z, Wang C, et al. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine 2011;18:189-93.
34
Lee HH, Park H, Sung G-H, Lee K, Lee T, Lee I, et al. Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model. J Microbiol 2014;52:696-701.
35
Ohta Y, Lee J-B, Hayashi K, Fujita A, Park DK, Hayashi T. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 2007;55:10194-9.
36
Ueda Y, Mori K, Satoh S, Dansako H, Ikeda M, Kato N. Anti-HCV activity of the Chinese medicinal fungus Cordyceps militaris. Biochem Biophys Res Commun 2014;447:341-5.
37
Qian G-m, Pan G-F, Guo J-Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res 2012;26:2358-62.
38
Hsu C-H, Sun H-L, Sheu J-N, Ku M-S, Hu C-M, Chan Y, et al. Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model. Pediatr Neonatol 2008;49:171-8.
39
Kelly EA, Jarjour NN. Role of matrix metalloproteinases in asthma. Curr Opin  Pulmonary Med 2003;9:28-33.
40
Liu Y-K, Shen W. Inhibitive effect of cordyceps sinensis on experimental hepatic fibrosis and its possible mechanism. World J Gastroenterol 2003;9:529.
41
Jung S-J, Jung E-S, Choi E-K, Sin H-S, Ha K-C, Chae S-W. Immunomodulatory effects of a mycelium extract of Cordyceps (Paecilomyces hepiali; CBG-CS-2): a randomized and double-blind clinical trial. BMC 2019;19:77.
2024 ©️ Galenos Publishing House