Kainik Asit ve MPP+ GLT-1’in İfade Artışını Neuroblastoma ve Glia Hücrelerinde Düzenler
PDF
Atıf
Paylaş
Talep
P: 164-170
Nisan 2021

Kainik Asit ve MPP+ GLT-1’in İfade Artışını Neuroblastoma ve Glia Hücrelerinde Düzenler

Bezmialem Science 2021;9(2):164-170
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 08.01.2020
Kabul Tarihi: 11.04.2020
Yayın Tarihi: 09.04.2021
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Glutamat, beyindeki majör uyarıcı transmiterdir. Fazla glutamat eksitotoksisiteye yol açar. GLT-1 (Glutamat Transportır 1) beyindeki glutamatın %95’ini temizleyerek nöron fonksiyonunu sağlar ve eksitotoksisiteyi önler. Bu çalışmada kainik asit and MPP+ (1-methyl-4-phenylpyridinium) isimli iki toksinin nöroblastoma ve glia (immortalize edilmiş insan astrositleri) hücrelerinde GLT-1 ve eksitotoksisite üzerindeki etkilerini incelemektir.

Yöntemler:

Nöroblastoma ve glia hücreleri kainik asit ve MPP+ ile muamele edilip hücre canlılığını ölçüldü. GLT-1’in mRNA ve protein ifadesi tespit edildikten sonra glutamat assay ile birikmiş Glutamate miktarı belirlendi.

Bulgular:

GLT-1’in mRNA seviyesi kainik asit ve MPP+ ile muamele sonucu nöroblastoma ve glia hücrelerinde artmıştır. GLT- 1’in protein seviyesi de glia hücrelerinde MPP+ muamelesi sonucu artmıştır. Salınan glutamatın 12 saatlik MPP+ muamelesinden sonra azaldığı gözlenmiştir. Ancak bu azalış daha sonra geçerli olmamıştır.

Sonuç:

Bulgularımız göstermektedir ki GLT-1 ifadesi kainik asit veya MPP+ muamelesi sonucu yaşamsal bir mekanizma olarak eksitotoksisiteyi önlemek için artmaktadır.

References

1
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014;121:799-817. 
2
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019;161:107550.
3
Karaca M, Frigerio F, Maechler P. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int.2011;59:510-7. 
4
Garand D, Mahadevan V, Woodin MA. Ionotropic and metabotropic kainate receptor signalling regulates Cl- homeostasis and GABAergic inhibition. J Physiol 2019;597:1677-90. 
5
Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65:1-105.
6
Lin CL, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 2012;4:1689-700.
7
Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009;30:379-87. 
8
Pandolfo M. Genetics of epilepsy. Semin Neurol 2011;31:506-18.
9
Verdaguer E, García-Jordà E, Jiménez A, Stranges A, Sureda FX, Canudas AM, et al.  Kainic acid-induced neuronal cell death in cerebellar granule cells is not prevented by caspase inhibitors. Br J Pharmacol 2002;135:1297-307. 
10
Mohd Sairazi NS, Sirajudeen KN, Asari MA, Muzaimi M, Mummedy S, Sulaiman SA. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. Evid Based Complement Alternat Med 2015;2015:972623. 
11
Contractor A, Mulle C, Swanson GT. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 2011;34:154-63. 
12
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015;386:896-912.
13
Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79:368-76.
14
Zhang Y, Tan F, Xu P, Qu S. Recent Advance in the Relationship between Excitatory Amino Acid Transporters and Parkinson’s Disease. Neural Plast 2016;2016:8941327.
15
Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 2014;121:849-59. 
16
Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 2005;134:57-66. 
17
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003;39:889-909.
18
Xue F, Shi C, Chen Q, Hang W, Xia L, Wu Y, et al.  Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance. Front Mol Neurosci 2017;10:49. 
19
Patneau DK, Wright PW, Winters C, Mayer ML, Gallo V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor. Neuron 1994;12:357-71.
20
Gottlieb M, Matute C. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 1997;17:290-300. 
21
Vargas JR, Takahashi DK, Thomson KE, Wilcox KS. The expression of kainate receptor subunits in hippocampal astrocytes after experimentally induced status epilepticus. J Neuropathol Exp Neurol 2013;72:919-32. 
22
Rieke GK, Sampson HW, Scarfe AD, Bowers DE. The toxin kainic acid: a study of avian nerve and glial cell response utilizing tritiated kainic acid and electron microscopic autoradiography. Acta Neuropathol 1988;76:185-203.
23
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015;9:91.
24
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al.  IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012;483:479-83. 
25
Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010;2010:214074.
26
Zheng XY, Zhang HL, Luo Q, Zhu J. Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol 2011;2011:457079. 
27
Sugumar M, Sevanan M, Sekar S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int J Neurosci 2019;129:534-9.
28
Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, et al.  Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 2008;153:329-37. 
29
Shih J, Liu L, Mason A, Higashimori H, Donmez G. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem 2014;131:573-81.
30
Zhang Y, He X, Meng X, Wu X, Tong H, Zhang X, et al.  Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis 2017;8:2574.
31
Sheldon AL, González MI, Krizman-Genda EN, Susarla BT, Robinson MB. Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 2008;53:296-308.
32
Susarla BT, Robinson MB. Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester. Neurochem Int 2008;52:709-22.
33
Molinuevo JL, Lladó A, Rami L. Memantine: targeting glutamate excitotoxicity in Alzheimer’s disease and other dementias. Am J Alzheimers Dis Other Demen 2005;20:77-85.
34
Dharmadasa T, Kiernan MC. Riluzole, disease stage and survival in ALS. Lancet Neurol 2018;17:385-6. 
2024 ©️ Galenos Publishing House