Farklı Polimerizasyon Sürelerinin Cam İyonomerlerin Mikrosertliği ve Pulpaiçi Isı Artışı Üzerine Etkisi
PDF
Atıf
Paylaş
Talep
P: 349-355
Ekim 2023

Farklı Polimerizasyon Sürelerinin Cam İyonomerlerin Mikrosertliği ve Pulpaiçi Isı Artışı Üzerine Etkisi

Bezmialem Science 2023;11(4):349-355
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 22.02.2023
Kabul Tarihi: 14.08.2023
Yayın Tarihi: 25.10.2023
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Bu çalışmanın amacı, farklı polimerizasyon sürelerine maruz bırakılan yüksek viskoziteli cam iyonomer, cam karbomer (GC) ve biyoaktif restoratif materyalinin (BRM) mikrosertliklerini ve intrapulpal termal değişiklikleri karşılaştırmaktır.

Yöntemler:

Bu çalışmada 60 adet çekilmiş molar dişi kullanıldı. Sınıf 1 kavite preparasyonu sırasında pulpa odası ile oklüzal kavite tabanı arasında 1 mm dentin kalınlığı bırakıldı. Dişler rastgele altı gruba ayrıldı. Grup 1: Yüksek viskoziteli cam iyonomer siman (HV-GIC) ile restore edildi, 20 sn polimerize edildi. Grup 2: HV-GIC ile restore edildi, 40 sn polimerize edildi. Grup 3: GC ile restore edildi, 60 sn polimerize edildi, Grup 4: GC ile restore edildi ve 90 sn polimerize edildi. Grup 5: Biyoaktif restoratif materyal (BRM) ile restore edildi, 20 sn polimerize edildi, Grup 6: BRM ile restore edildi, 40 sn polimerize edildi. GC grupları hariç tüm cam iyonomer simanları LED polimerizasyon cihazı ile polimerize edildi. GC grupları özel ışık aleti ile polimerize edildi.Tüm örneklerin pulpaiçi ısı artış değerleri J tipi termometre cihazı ile ölçüldü. Daha sonra mikrosertlik değerleri üç farklı noktadan değerlendirildi. Veriler tek yönlü ANOVA, Tukey testi ve t-testleri ile analiz edildi (p<0,05).

Bulgular:

Grup 2, Grup 1’e göre pulpaiçi ısı artışında istatistiksel olarak anlamlı fark gösterdi Grup 4, Grup 3’e göre istatistiksel olarak daha yüksek pulpaiçi sıcaklık artışı gösterdi. Gruplar karşılaştırıldığında en yüksek mikrosertlik değerleri GC gruplarında elde edildi. Grup 2, Grup 1’e göre istatistiksel anlamlı derecede yüksek mikrosertlik değeri gösterdi. Grup 6, Grup 5’e göre anlamlı derecede yüksek mikrosertlik değeri gösterdi.

Sonuç:

BRM’nin 40 sn polimerizasyonu intrapulpal sıcaklık artışına neden olmadan mikrosertliği olumlu yönde etkilemiştir. GC’nin 90 sn polimerizasyonunda yüksek mikrosertlik değerleri elde edilirken pulpaya zarar verecek derecede ısı artışına da neden olmuştur.

References

1
López-García S, Pecci-Lloret MP, Pecci-Lloret MR, Oñate-Sánchez RE, García-Bernal D, Castelo-Baz P, et al. In Vitro Evaluation of the Biological Effects of ACTIVA Kids BioACTIVE Restorative, Ionolux, and Riva Light Cure on Human Dental Pulp Stem Cells. Materials (Basel) 2019;12:3694.
2
Kahvecioglu F, Tosun G, Ülker HE. Intrapulpal thermal changes during setting reaction of glass Carbomer® using thermocure lamp. Biomed Res Int 2016;2016:5173805.
3
Gorseta K, Borzabadi-Farahani A, Moshaverinia A, Glavina D, Lynch E. Effect of different thermo-light polymerization on flexural strength of two glass ionomer cements and a glass carbomer cement. J Prosthet Dent 2017;118:102-7.
4
Menne-Happ U, Ilie N. Effect of gloss and heat on the mechanical behaviour of a glass carbomer cement. J Dent 2013;41:223-30.
5
Gavic L, Gorseta K, Glavina D, Czarnecka B, Nicholson JW. Heat transfer properties and thermal cure of glass-ionomer dental cements. J Mater Sci Mater Med 2015;26:249.
6
C Crowley CM, Doyle J, Towler MR, Hill RG, Hampshire S. The influence of capsule geometry and cement formulation on the apparent viscosity of dental cements. J Dent 2006;34:566-73.
7
Diem VT, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clin Oral Investig 2014;18:753-9.
8
Friedl K, Hiller KA, Friedl KH. Clinical performance of a new glass ionomer based restoration system: a retrospective cohort study. Dent Mater 2011;27:1031-7.
9
Miyazaki M, Moore BK, Onose H. Effect of surface coatings on flexural properties of glass ionomers. Eur J Oral Sci 1996;104:600-4.
10
Benetti AR, Michou S, Larsen L, Peutzfeldt A, Pallesen U, van Dijken JWV. Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater Investig Dent 2019;6:90-8.
11
Ozturk B, Ozturk A, Usumez A, Usumez S, Ozer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent 2004;29:325-32.
12
Yazici AR, Müftü A, Kugel G, Perry RD. Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro. Oper Dent 2006;31:261-5.
13
Secilmis A, Bulbul M, Sari T, Usumez A. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Lasers Med Sci 2013;28:167-70.
14
Guiraldo RD, Consani S, Lympius T, Schneider LF, Sinhoreti MA, Correr-Sobrinho L. Influence of the light curing unit and thickness of residual dentin on generation of heat during composite photoactivation. J Oral Sci 2008;50:137-42.
15
Durner J, Obermaier J, Draenert M, Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater 2012;28:1146-53.
16
Miletic V, Pongprueksa P, De Munck J, Brooks NR, Van Meerbeek B. Curing characteristics of flowable and sculptable bulk-fill composites. Clin Oral Investig 2017;21:1201-12.
17
Price RB, Labrie D, Rueggeberg FA, Sullivan B, Kostylev I, Fahey J. Correlation between the beam profile from a curing light and the microhardness of four resins. Dent Mater 2014;30:1345-57.
18
Botsali MS, Tokay U, Ozmen B, Cortcu M, Koyuturk AE, Kahvecioglu F. Effect of new innovative restorative carbomised glass cement on intrapulpal temperature rise: an ex-vivo study. Braz Oral Res 2016;30:1806-832420160001000261.
19
Savas S, Botsali MS, Kucukyilmaz E, Sari T. Evaluation of temperature changes in the pulp chamber during polymerization of light-cured pulp-capping materials by using a VALO LED light curing unit at different curing distances. Dent Mater J 2014;33:764-9.
20
Lakhani J, Agrawal V, Mahant R, Kapoor S, Vaghamshi D, Shah A. Pulpal Temperature Rise: Evaluation after Light Activation of Newer Pulp-Capping Materials and Resin Composite. Contemp Clin Dent 2018;9:644-8.
21
R Ramoglu SI, Karamehmetoglu H, Sari T, Usumez S. Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. Angle Orthod 2015;85:381-5.
22
Sari T, Celik G, Usumez A. Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 2015;30:577-82.
23
Hussey D, Biagioni P, Lamey PJ. Thermographic measurement of temperature change during resin composite polymerization in vivo. J Dent 1995;23:267-71.
24
Attrill DC, Davies RM, King TA, Dickinson MR, Blinkhorn AS. Thermal effects of the Er: YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. J Dent 2004;32:35-40.
25
Tosun G, Usumez A, Yondem I, Sener Y. Temperature rise under normal and caries-affected primary tooth dentin disks during polymerization of adhesives and resin-containing dental materials. Dent Mater J 2008;27:466-70.
26
Sari T, Celik G, Usumez A. Temperature rise in pulp and gel during laser-activated bleaching: in vitro. Lasers Med Sci 2015;30:577-82.
27
Al-Qudah AA, Mitchell CA, Biagioni PA, Hussey DL. Thermographic investigation of contemporary resin-containing dental materials. J Dent 2005;33:593-602.
28
Malkoç S, Uysal T, Üşümez S, İşman E, Baysal A. In-vitro assessment of temperature rise in the pulp during orthodontic bonding. Am J Orthod Dentofacial Orthop 2010;137:379-83.
29
Fanibunda KB. Thermal conductivity of normal and abnormal human dentine. Arch Oral Biol 1975;20:457-9.
30
Altan H, Göztas Z, Arslanoglu Z. Bulk-Fill restorative materials in primary tooth: An intrapulpal temperature changes study. Contemp Clin Dent 2018;9(Suppl 1):52-7.
31
Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999;15:275-81.
32
Yazici AR, Müftü A, Kugel G, Perry RD. Comparison of temperature changes in the pulp chamber induced by various light curing units, in vitro. Oper Dent 2006;31:261-5.
33
Dogan A, Hubbezoglu I, Dogan OM, Bolayir G, Demir H. Temperature rise induced by various light curing units through human dentin. Dent Mater J 2009;28:253-60.
34
Aguiar FH, Barros GK, Lima DA, Ambrosano GM, Lovadino JR. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study. Biomed Mater 2006;1:140-3.
35
Secilmis A, Bulbul M, Sari T, Usumez A. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Lasers Med Sci 2013;28:167-70.
36
Korkut E, Gezgin O, Tulumbacı F, Özer H, Şener Y. Comparative Evaluation Of Mechanical Properties Of A Bioactive Resin Modified Glass Ionomer Cement. EÜ Dişhek Fak Deg 2017;38:170-5.
37
Baloch F, Mirza AJ, Baloch D. An in-vitro study to compare the microhardness of glass ionomer cement set conventionally versus set under ultrasonic waves. Int J Health Sci (Qassim) 2010;4:149-55.
38
Bala O, Arisu HD, Yikilgan I, Arslan S, Gullu A. Evaluation of surface roughness and hardness of different glass ionomer cements. Eur J Dent 2012;6:79-86.
39
S Shintome LK, Nagayassu MP, Di Nicoló R, Myaki SI. Microhardness of glass ionomer cements indicated for the ART technique according to surface protection treatment and storage time. Braz Oral Res 2009;23:439-45.
40
Talal A, Tanner K, Billington R, Pearson G. Effect of ultrasound on the setting characteristics of glass ionomer cements studied by Fourier Transform Infrared Spectroscopy. J Mater Sci Mater Med 2009;20:405-11.
41
Buldur M, Karaarslan ES. Microhardness of glass carbomer and high-viscous glass Ionomer cement in different thickness and thermo-light curing durations after thermocycling aging. BMC Oral Health 2019;19:273.
42
Kleverlaan CJ, van Duinen RN, Feilzer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater 2004;20:45-50.
43
Prentice LH, Tyas MJ, Burrow MF. The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent Mater 2006;22:746-51.
44
Arita K, Yamamoto A, Shinonaga Y, Harada K, Abe Y, Nakagawa K, et al. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent Mater J 2011;30:672-83.
45
Shen L, Barbosa de Sousa F, Tay N, Lang TS, Kaixin VL, Han J, et al. Deformation behavior of normal human enamel: A study by nanoindentation. J Mech Behav Biomed Mater 2020;108:103799.
46
He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 2008;1:18-29.
47
Hotta M, Hirukawa H, Yamamoto K. Effect of coating materials on restorative glass-ionomer cement surface. Oper Dent 1992;17:57-61.
48
Šalinović I, Stunja M, Schauper Z, Verzak Ž, Ivanišević Malčić A, Brzović Rajić V. Mechanical properties of high viscosity glass ionomer and glass hybrid restorative materials. Acta Stomatol Croat. 2019;53:125-31.
49
Ana ID, Matsuya S, Ohta M, Ishikawa K. Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement. Biomaterials 2003;24:3061-7.
2024 ©️ Galenos Publishing House