Trikloroasetik Asidin Kalsiyum Silikat Esaslı Simanların Bağlanma Dayanımı Üzerindeki Etkisi: Modifiye İtme Testi
PDF
Atıf
Paylaş
Talep
P: 194-198
Nisan 2022

Trikloroasetik Asidin Kalsiyum Silikat Esaslı Simanların Bağlanma Dayanımı Üzerindeki Etkisi: Modifiye İtme Testi

Bezmialem Science 2022;10(2):194-198
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 01.01.2021
Kabul Tarihi: 14.02.2021
Yayın Tarihi: 14.04.2022
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Bu çalışma, trikloroasetik asidin (TCA) kalsiyum silikat esaslı simanların dentine bağlanma dayanımına etkisini araştırmak amacı ile yapılmıştır.

Yöntemler:

Toplam 10 adet tek köklü sığır dişi, 2 mm kalınlığında dilimler halinde uzunlamasına kesitlere ayrıldı. Bu 10 dişten elde edilen her dentin diliminde 1,2 mm’lik elmas frez ile 6 adet delik açıldı (toplam 60 delik). TCA içeren pamuk peletler, her dentin dilimde bulunan 3 deliğe 1 dakika süreyle uygulanırken, diğer 3 deliğe asit uygulanmadı. TCA uygulanan ve TCA uygulanmayan gruplar, kullanılan malzemeye göre tekrar üç alt gruba ayrıldı: ProRoot mineral trioksit agregat [(MTA); n=10], Harvard MTA (n=10) ve Biodentine (n=10). Toplam 7 gün sonra, malzemelerin yerinden çıkma direnci evrensel bir test makinesi kullanılarak hesaplandı. Bağlanma başarısızlık türleri bir stereomikroskop altında incelendi.

Bulgular:

TCA, test edilen malzemelerin bağlanma dayanımı üzerinde istatistiksel olarak önemli bir etkiye sahip değildi (p>,05). Harvard MTA alt grubu en düşük ortalama bağlanma gücüne sahipken (2,25±0,79 MPa), Biodentine alt grubu en yüksek değere (10,49±3,32 MPa) sahipti. En yaygın bağlanma hatası tipleri, ProRoot MTA alt grubunda (%60) karışık, Harvard MTA (%60) ve Biodentine (%70) alt gruplarında ise koheziv bağlanma türünde bulundu.

Sonuç:

Biodentine’in bağlanma gücü ProRoot ve Harvard MTA’nınkinden daha fazla bulunmuştur. TCA, MTA veya Biodentine’in itme bağlanma dayanımını etkilememektedir.

References

1
Patel S, Kanagasingam S, Pitt Ford T. External cervical resorption: a review. J Endod 2009;35:616-25.
2
Andreasen JO. External root resorption: its implication in dental traumatology, paedodontics, periodontics, orthodontics and endodontics. Int Endod J 1985;18:109-18.
3
Bansal P, Nikhil V, Kapur S. Multiple idiopathic external apical root resorption: a rare case report. J Conserv Dent 2015;18:70-2.
4
Heithersay GS. Treatment of invasive cervical resorption: an analysis of results using topical application of trichloracetic acid, curettage, and restoration. Quintessence Int 1999;30:96-110.
5
Baroudi K, Samir S. Sealing Ability of MTA Used in Perforation Repair of Permanent Teeth; Literature Review. Open Dent J 2016;10:278-86.
6
Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to Mineral Trioxide Aggregate. J Endod 1998;24:543‐7.
7
Tanalp J, Karapinar‐Kazandag M, Ersev H, Bayirli G. The status of mineral trioxide aggregate in endodontics education in dental schools in Turkey. J Dent Educ 2012;76:752-8.
8
Laurent P, Camps J, De Meo M, Dejou J, About I. Induction of specific cell responces to a Ca(3) Sio(5)-based posterior restorative material. Dent Mater 2008;24:1484-94.
9
Laurent P, Camps J, About I. Biodentine(TM) induces TGF-b1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012;45:439-48.
10
Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out Bond strength of Biodentine and conventional root perforation repair materials. J Endod 2013;39:380-4.
11
Nagahara T, Takeda K, Aida Y, Iwata T, Yagi R, Kurihara H, et al. Combined endodontic and periodontal management of a class 3 invasive cervical resorption in a mandibular first molar. Clin Case Rep 2018;6:2005-10.
12
Heithersay GS. Invasive cervical resorption. Endodontic Topics 2004;7:73‐92.
13
Heithersay G. Management of tooth resorption. Aust Dent J 2007;52(Suppl 1):S105-21.
14
Schwartz RS, Robbins JW, Rindler E. Management of invasive cervical resorption: observations from three private practices and a report of three cases. J Endod 2010;36:1721-30.
15
Majeed A, Alshwaimi E. Push-Out Bond Strength and Surface Microhardness of Calcium Silicate-Based Biomaterials: An in vitro Study. Med Princ Pract 2017;26:139-45.
16
Saghiri MA, Shokouhinejad N, Lotfi M, Aminsobhani M, Saghiri AM. Push-out bond strength of mineral trioxide aggregate in the presence of alkaline pH. J Endod 2010;36:1856-9.
17
Buldur B, Oznurhan F, Kaptan A. The effect of different chelating agents on the push-out bond strength of proroot mta and endosequence root repair material. Eur Oral Res 2019;53:88-93.
18
Orhan EO, Irmak Ö, Mumcu E. Evaluation of the bond strengths of two novel bioceramic cement using a modified thin‐slice push‐out test model. Int J Appl Ceram Technol 2019;16:1998-2005.
19
Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PM. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod 2010;36:871-4.
20
El-Maaita AM, Qualtrough AJ, Watts DC. The effect of smear layer on the push-out bond strength of root canal calcium silicate cements. Dent Mater 2013;29:797-803.
21
Jain P, Nanda Z, Deore R, Amit G. Effect of acidic environment and intracanal medicament on push-out bond strength of biodentine and mineral trioxide aggregate plus: an in vitro study. Med Pharm Rep 2019;92:277-81.
22
Lewinstein I, Rotstein I. Effect of trichloracetic acid on the microhardness and surface morphology of human dentin and enamel. Endod Dent Traumatol 1992;8:16-20. 
23
Khoroushi M, Tavasoli M. The effect of trichloracetic acid as a hemostatic and etching agent on the morphological characteristics and shear bond strength of resin composite to enamel. Oper Dent 2010;35:187-93.
24
Thomas B, Chandak M, Deosarkar B. Comparison of Acidic versus Alkaline Environment for Furcation Perforation Repair among Calcium Silicate Based Materials: An in vitro Comparative Study. BJMMR 2017;19:1-8. 
25
Hashem AA, Wanees Amin SA. The effect of acidity on dislodgment resistance of mineral trioxide aggregate and bioaggregate in furcation perforations: an in vitro comparative study. J Endod 2012;38:245-9.
26
Galal M, Zaki DY, Rabie MI, El-Shereif SM, Hamdy TM. Solubility, pH change, and calcium ion release of low solubility endodontic mineral trioxide aggregate. Bulletin of the National Research Centre 2020;44:42.
27
Stefaneli Marques JH, Silva-Sousa YTC, Rached-Júnior FJA, Macedo LMD, Mazzi-Chaves JF, Camilleri J, et al. Push-out bond strength of different tricalcium silicate-based filling materials to root dentin. Braz Oral Res 2018;32:e18. 
28
Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 2013;29:580-93.
29
Hafezi M, Abbasi-Shahni M, Zamanian A, Heseraki S. Preparation and characterization of whitlockite-merwinite nanocomposite. Journal of Ceramic Processing Research 2013;14:96-9.
30
Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 2012;91:454-9.
2024 ©️ Galenos Publishing House