Adipoz Kökenli Kök Hücre Kullanımıyla Kemik Doku Üretimi
PDF
Atıf
Paylaş
Talep
P: 294-300
Temmuz 2021

Adipoz Kökenli Kök Hücre Kullanımıyla Kemik Doku Üretimi

Bezmialem Science 2021;9(3):294-300
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 11.10.2019
Kabul Tarihi: 24.04.2020
Yayın Tarihi: 25.06.2021
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Kemik doku onarımda altın standart olan otojen kemik greftleri her zaman tüm gereksinimleri karşılayamamaktadır. Bu çalışmanın amacı, otojen yağ doku kaynaklı mezenkimal kök hücrelerin (ATDMSC) ve hücresizleştirilmiş kemik allo greftlerinin kombinasyonunu kullanarak kemik dokusu üretmektir.

Yöntemler:

Tavşan ulnasının 1/3 orta segmentinde oluşturulan 1,5 cm’lik bir kemik defektine, grup tasarımlarına göre, gruplar; 1: kontrol; 2: krio ile muamele edilmiş kemik grefti; 3: hücresizleştirilmiş kemik grefti; 4: ATDMSC implante edilmiş hücresizleştirilmiş kemik grefti olacak şekilde mini plak ve vida ile osteosentez yapıldı.

Bulgular:

Birinci, ikinci ve dördüncü grupta greft iyileşmesi ve düzensiz kallus oluşumu gözlendi. Birinci grupta, haversian sistemlerinin organizasyonu, lakunların yapısı ve canaliculi ossiumların varlığı gözlendi; İkinci grupta, havers kanallarının yaklaşık %40’ı kan damarları içeriyordu ve mikroskobik olarak incelenen alanların %90’ında ince filamentler şeklinde kanalikül ossiumları vardı; Üçüncü grupta, havers kanallarının çoğu boştu, osteosid kanallarının çoğu hücre içermiyordu ve orada kanaliküller ossiumu yoktu; dördüncü grupta, havers kanallarının bir kısmı kan damarları içermekteydi ve hücresizleştirmeye bağlı olarak hücreleri içeren kısmen lakazlar mevcutken, incelenen mikroskop alanlarının yaklaşık %50’sinde, osteositlere farklılaşan mezenkimal kök hücrelerin varlığı ile canaliculi ossium varlığı moleküler testler ile kanıtlandı.

Sonuç:

ATDMSC ile uygun bir niş ortamının oluşturulması halinde kemik greftinin yaşayabilirliğinde artış sağlandı ve bunun ATDMSC’lerin osteojenik hücrelere dönüşüm yoluyla olduğu gösterildi.

References

1
Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg  2012;20:142-50. 
2
Goodrich JT, Sandler AL, Tepper O. A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst 2012;28:1577-88.
3
Hagen A, Gorenoi V, Schönermark MP. Bone graft substitutes for the treatment of traumatic fractures of the extremities. GMS Health Technol Assess 2012;8:Doc04. 
4
Costantino PD, Hiltzik D, Govindaraj S, Moche J. Bone healing and bone substitutes. Facial Plast Surg 2002;18:13-26.
5
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012;8:114-24.
6
Cornell CN. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am 1999;30:591-8.
7
Dong Y, Chen X, Hong Y. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells. Spine (Phila Pa 1976) 2013;38:1300-6.
8
Calis M, Demirtas TT, Atilla P, Tatar İ, Ersoy O, Irmak G, et al. Estrogen as a novel agent for induction of adipose-derived mesenchymal stem cells for osteogenic differentiation: in vivo bone tissue-engineering study. Plast Reconstr Surg 2014;133:499-510.
9
Choi JW, Park EJ, Shin HS, Shin IS, Ra JC, Koh KS. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Ann Plast Surg 2014;72:225-33. 
10
Ozpur MA, Guneren E, Canter HI, Karaaltin MV, Ovali E, Yogun FN, ve ark. Generation of Skin Tissue Using Adipose Tissue-Derived Stem Cells. Plast Reconstr Surg 2016;137:134-43. 
11
Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 2008;90:36-42.
12
Ringe J, Kaps C, Burmester GR, Sittinger M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 2002;89:338-51.
13
Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg 2001;71:354-61.
14
Hui JH, Ouyang HW, Hutmacher DW, Goh JC, Lee EH. Mesenchymal stem cells in musculoskeletal tissue engineering: a review of recent advances in National University of Singapore. Ann Acad Med Singap 2005;34:206-12. 
15
Endres M, Hutmacher DW, Salgado AJ, Kaps C, Ringe J, Reis RL, et al. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng 2003;9:689-702.
16
Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998; 80:985-96.
17
Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 2003;85:1927-35. 
18
Schantz JT, Hutmacher DW, Lam CX, Brinkmann M, Wong KM, Lim TC, et al. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng  2003;9:127-39. 
19
Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344:385-6. 
20
Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 2004;88:359-68.
21
Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004;6:7-14. 
22
Weinzierl K, Hemprich A, Frerich B. Bone engineering with adipose tissue derived stromal cells. J Craniomaxillofac Surg 2006;34:466-71.
23
Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 2001;7:729-41.
24
Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, et al. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 2004;178:2-12.
25
Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 2007;13:1291-8. 
26
Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007;28:5280-90. 
27
Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G, Stark GB, Südkamp NP, et al. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng 2006;12:2853-62. 
28
Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 2007;36:613-22. 
29
Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 2005;13:845-53.
30
Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng 2007;13:659-66. 
31
Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 2007;25:750-60.
32
Rücker C, Kirch H, Pullig O, Walles H. Strategies and First Advances in the Development of Prevascularized Bone Implants. Curr Mol Biol Rep 2016:2:149-57.
33
Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective. Bone Res 2013;1:216-48.
2024 ©️ Galenos Publishing House